Properties

Label 36.0.559...125.1
Degree $36$
Signature $[0, 18]$
Discriminant $5.598\times 10^{55}$
Root discriminant \(35.36\)
Ramified primes $5,7,13$
Class number $4$ (GRH)
Class group [2, 2] (GRH)
Galois group $S_3\times C_{12}$ (as 36T27)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 2*x^35 - 5*x^34 + 15*x^33 + 37*x^32 - 147*x^31 - 224*x^30 + 1010*x^29 + 1898*x^28 - 7677*x^27 + 15016*x^26 - 2633*x^25 - 23501*x^24 + 7233*x^23 + 70181*x^22 - 185883*x^21 + 150724*x^20 + 74333*x^19 - 196394*x^18 + 25492*x^17 + 539723*x^16 - 835590*x^15 + 653911*x^14 - 237923*x^13 - 88438*x^12 + 471980*x^11 - 579070*x^10 + 377032*x^9 - 114549*x^8 - 5465*x^7 + 78115*x^6 - 92900*x^5 + 61725*x^4 - 24875*x^3 + 9625*x^2 - 3125*x + 625)
 
gp: K = bnfinit(y^36 - 2*y^35 - 5*y^34 + 15*y^33 + 37*y^32 - 147*y^31 - 224*y^30 + 1010*y^29 + 1898*y^28 - 7677*y^27 + 15016*y^26 - 2633*y^25 - 23501*y^24 + 7233*y^23 + 70181*y^22 - 185883*y^21 + 150724*y^20 + 74333*y^19 - 196394*y^18 + 25492*y^17 + 539723*y^16 - 835590*y^15 + 653911*y^14 - 237923*y^13 - 88438*y^12 + 471980*y^11 - 579070*y^10 + 377032*y^9 - 114549*y^8 - 5465*y^7 + 78115*y^6 - 92900*y^5 + 61725*y^4 - 24875*y^3 + 9625*y^2 - 3125*y + 625, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - 2*x^35 - 5*x^34 + 15*x^33 + 37*x^32 - 147*x^31 - 224*x^30 + 1010*x^29 + 1898*x^28 - 7677*x^27 + 15016*x^26 - 2633*x^25 - 23501*x^24 + 7233*x^23 + 70181*x^22 - 185883*x^21 + 150724*x^20 + 74333*x^19 - 196394*x^18 + 25492*x^17 + 539723*x^16 - 835590*x^15 + 653911*x^14 - 237923*x^13 - 88438*x^12 + 471980*x^11 - 579070*x^10 + 377032*x^9 - 114549*x^8 - 5465*x^7 + 78115*x^6 - 92900*x^5 + 61725*x^4 - 24875*x^3 + 9625*x^2 - 3125*x + 625);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 2*x^35 - 5*x^34 + 15*x^33 + 37*x^32 - 147*x^31 - 224*x^30 + 1010*x^29 + 1898*x^28 - 7677*x^27 + 15016*x^26 - 2633*x^25 - 23501*x^24 + 7233*x^23 + 70181*x^22 - 185883*x^21 + 150724*x^20 + 74333*x^19 - 196394*x^18 + 25492*x^17 + 539723*x^16 - 835590*x^15 + 653911*x^14 - 237923*x^13 - 88438*x^12 + 471980*x^11 - 579070*x^10 + 377032*x^9 - 114549*x^8 - 5465*x^7 + 78115*x^6 - 92900*x^5 + 61725*x^4 - 24875*x^3 + 9625*x^2 - 3125*x + 625)
 

\( x^{36} - 2 x^{35} - 5 x^{34} + 15 x^{33} + 37 x^{32} - 147 x^{31} - 224 x^{30} + 1010 x^{29} + \cdots + 625 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(55976669160095710730979516406061310775578022003173828125\) \(\medspace = 5^{27}\cdot 7^{12}\cdot 13^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(35.36\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{3/4}7^{1/2}13^{2/3}\approx 48.91087415715005$
Ramified primes:   \(5\), \(7\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $12$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5}a^{18}+\frac{1}{5}a^{14}+\frac{1}{5}a^{10}+\frac{1}{5}a^{6}+\frac{1}{5}a^{2}$, $\frac{1}{5}a^{19}+\frac{1}{5}a^{15}+\frac{1}{5}a^{11}+\frac{1}{5}a^{7}+\frac{1}{5}a^{3}$, $\frac{1}{5}a^{20}+\frac{1}{5}a^{16}+\frac{1}{5}a^{12}+\frac{1}{5}a^{8}+\frac{1}{5}a^{4}$, $\frac{1}{5}a^{21}+\frac{1}{5}a^{17}+\frac{1}{5}a^{13}+\frac{1}{5}a^{9}+\frac{1}{5}a^{5}$, $\frac{1}{5}a^{22}-\frac{1}{5}a^{2}$, $\frac{1}{5}a^{23}-\frac{1}{5}a^{3}$, $\frac{1}{5}a^{24}-\frac{1}{5}a^{4}$, $\frac{1}{5}a^{25}-\frac{1}{5}a^{5}$, $\frac{1}{5}a^{26}-\frac{1}{5}a^{6}$, $\frac{1}{25}a^{27}+\frac{2}{25}a^{26}+\frac{2}{25}a^{25}-\frac{1}{25}a^{24}-\frac{1}{25}a^{23}-\frac{2}{25}a^{22}+\frac{1}{25}a^{21}+\frac{2}{25}a^{20}-\frac{1}{25}a^{19}-\frac{2}{25}a^{18}+\frac{1}{25}a^{17}+\frac{2}{25}a^{16}-\frac{1}{25}a^{15}-\frac{2}{25}a^{14}+\frac{1}{25}a^{13}+\frac{2}{25}a^{12}-\frac{1}{25}a^{11}-\frac{2}{25}a^{10}+\frac{1}{25}a^{9}+\frac{2}{25}a^{8}-\frac{2}{25}a^{7}-\frac{4}{25}a^{6}-\frac{1}{25}a^{5}+\frac{3}{25}a^{4}$, $\frac{1}{75}a^{28}-\frac{1}{75}a^{27}+\frac{2}{25}a^{26}-\frac{7}{75}a^{25}+\frac{2}{75}a^{24}+\frac{2}{25}a^{23}-\frac{1}{25}a^{22}-\frac{2}{25}a^{21}+\frac{1}{25}a^{20}-\frac{4}{75}a^{19}+\frac{2}{75}a^{18}-\frac{2}{25}a^{17}+\frac{1}{25}a^{16}+\frac{7}{25}a^{15}+\frac{2}{75}a^{14}-\frac{2}{25}a^{13}+\frac{1}{25}a^{12}+\frac{7}{25}a^{11}-\frac{23}{75}a^{10}-\frac{2}{25}a^{9}+\frac{2}{75}a^{8}-\frac{1}{25}a^{7}+\frac{7}{25}a^{6}+\frac{1}{75}a^{5}+\frac{26}{75}a^{4}+\frac{1}{5}a^{3}+\frac{2}{5}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{75}a^{29}-\frac{1}{75}a^{27}+\frac{2}{75}a^{26}-\frac{2}{75}a^{25}-\frac{1}{75}a^{24}-\frac{2}{25}a^{23}+\frac{1}{25}a^{22}+\frac{2}{25}a^{21}+\frac{2}{75}a^{20}+\frac{4}{75}a^{19}-\frac{7}{75}a^{18}+\frac{2}{25}a^{17}+\frac{9}{25}a^{16}+\frac{29}{75}a^{15}-\frac{7}{75}a^{14}+\frac{2}{25}a^{13}+\frac{9}{25}a^{12}+\frac{4}{75}a^{11}-\frac{32}{75}a^{10}+\frac{1}{15}a^{9}+\frac{2}{75}a^{8}+\frac{2}{5}a^{7}+\frac{16}{75}a^{6}+\frac{11}{25}a^{5}-\frac{22}{75}a^{4}-\frac{1}{5}a^{3}-\frac{2}{15}a^{2}+\frac{1}{3}$, $\frac{1}{11325}a^{30}+\frac{8}{2265}a^{29}-\frac{62}{11325}a^{28}+\frac{167}{11325}a^{27}+\frac{9}{151}a^{26}+\frac{349}{11325}a^{25}+\frac{266}{3775}a^{24}+\frac{246}{3775}a^{23}-\frac{233}{3775}a^{22}+\frac{512}{11325}a^{21}-\frac{327}{3775}a^{20}+\frac{883}{11325}a^{19}-\frac{58}{3775}a^{18}+\frac{529}{3775}a^{17}-\frac{2656}{11325}a^{16}-\frac{3767}{11325}a^{15}+\frac{342}{3775}a^{14}-\frac{996}{3775}a^{13}-\frac{5156}{11325}a^{12}-\frac{4117}{11325}a^{11}+\frac{62}{453}a^{10}-\frac{4928}{11325}a^{9}-\frac{1223}{3775}a^{8}-\frac{1559}{11325}a^{7}-\frac{4574}{11325}a^{6}+\frac{538}{11325}a^{5}+\frac{32}{3775}a^{4}+\frac{919}{2265}a^{3}-\frac{118}{453}a^{2}+\frac{110}{453}a+\frac{25}{151}$, $\frac{1}{11325}a^{31}-\frac{1}{11325}a^{29}-\frac{71}{11325}a^{28}+\frac{7}{2265}a^{27}-\frac{226}{11325}a^{26}-\frac{1082}{11325}a^{25}-\frac{227}{11325}a^{24}-\frac{107}{3775}a^{23}-\frac{67}{11325}a^{22}+\frac{736}{11325}a^{21}-\frac{43}{11325}a^{20}-\frac{311}{11325}a^{19}-\frac{362}{11325}a^{18}+\frac{1361}{11325}a^{17}+\frac{1907}{11325}a^{16}+\frac{638}{3775}a^{15}+\frac{3688}{11325}a^{14}+\frac{661}{11325}a^{13}-\frac{368}{11325}a^{12}-\frac{2437}{11325}a^{11}-\frac{4112}{11325}a^{10}-\frac{396}{3775}a^{9}-\frac{5497}{11325}a^{8}+\frac{1293}{3775}a^{7}-\frac{2836}{11325}a^{6}-\frac{3757}{11325}a^{5}+\frac{3}{25}a^{4}+\frac{234}{755}a^{3}+\frac{896}{2265}a^{2}+\frac{205}{453}a+\frac{20}{453}$, $\frac{1}{1800675}a^{32}+\frac{19}{600225}a^{31}+\frac{4}{200075}a^{30}+\frac{8147}{1800675}a^{29}-\frac{2137}{360135}a^{28}+\frac{2024}{200075}a^{27}-\frac{9304}{360135}a^{26}-\frac{63182}{1800675}a^{25}+\frac{144314}{1800675}a^{24}+\frac{121739}{1800675}a^{23}-\frac{140837}{1800675}a^{22}+\frac{151}{11925}a^{21}-\frac{26828}{1800675}a^{20}+\frac{137194}{1800675}a^{19}-\frac{89282}{1800675}a^{18}-\frac{239599}{1800675}a^{17}-\frac{292528}{1800675}a^{16}+\frac{881219}{1800675}a^{15}-\frac{1416}{3775}a^{14}+\frac{58576}{1800675}a^{13}-\frac{240968}{600225}a^{12}+\frac{15404}{600225}a^{11}+\frac{61594}{600225}a^{10}-\frac{81257}{600225}a^{9}-\frac{621118}{1800675}a^{8}+\frac{204226}{600225}a^{7}-\frac{16043}{200075}a^{6}+\frac{66383}{1800675}a^{5}-\frac{61492}{1800675}a^{4}-\frac{17158}{120045}a^{3}+\frac{52822}{120045}a^{2}-\frac{10949}{24009}a-\frac{19037}{72027}$, $\frac{1}{71\!\cdots\!25}a^{33}-\frac{12\!\cdots\!28}{79\!\cdots\!25}a^{32}+\frac{43\!\cdots\!97}{47\!\cdots\!75}a^{31}-\frac{24\!\cdots\!51}{14\!\cdots\!25}a^{30}+\frac{22\!\cdots\!07}{71\!\cdots\!25}a^{29}-\frac{29\!\cdots\!83}{79\!\cdots\!25}a^{28}+\frac{46\!\cdots\!21}{71\!\cdots\!25}a^{27}+\frac{13\!\cdots\!52}{14\!\cdots\!25}a^{26}+\frac{41\!\cdots\!38}{71\!\cdots\!25}a^{25}-\frac{52\!\cdots\!87}{71\!\cdots\!25}a^{24}+\frac{40\!\cdots\!66}{71\!\cdots\!25}a^{23}+\frac{47\!\cdots\!02}{71\!\cdots\!25}a^{22}-\frac{78\!\cdots\!81}{71\!\cdots\!25}a^{21}+\frac{68\!\cdots\!48}{71\!\cdots\!25}a^{20}+\frac{66\!\cdots\!86}{71\!\cdots\!25}a^{19}-\frac{22\!\cdots\!98}{71\!\cdots\!25}a^{18}-\frac{24\!\cdots\!31}{71\!\cdots\!25}a^{17}-\frac{29\!\cdots\!27}{71\!\cdots\!25}a^{16}-\frac{34\!\cdots\!21}{79\!\cdots\!25}a^{15}+\frac{35\!\cdots\!27}{71\!\cdots\!25}a^{14}-\frac{85\!\cdots\!19}{23\!\cdots\!75}a^{13}+\frac{63\!\cdots\!70}{19\!\cdots\!31}a^{12}-\frac{10\!\cdots\!73}{23\!\cdots\!75}a^{11}-\frac{30\!\cdots\!31}{23\!\cdots\!75}a^{10}+\frac{25\!\cdots\!12}{71\!\cdots\!25}a^{9}+\frac{39\!\cdots\!41}{15\!\cdots\!25}a^{8}+\frac{62\!\cdots\!41}{47\!\cdots\!75}a^{7}-\frac{35\!\cdots\!83}{71\!\cdots\!25}a^{6}+\frac{19\!\cdots\!56}{71\!\cdots\!25}a^{5}+\frac{23\!\cdots\!69}{47\!\cdots\!75}a^{4}-\frac{35\!\cdots\!14}{15\!\cdots\!25}a^{3}+\frac{14\!\cdots\!87}{31\!\cdots\!85}a^{2}-\frac{12\!\cdots\!71}{28\!\cdots\!65}a+\frac{17\!\cdots\!04}{19\!\cdots\!31}$, $\frac{1}{71\!\cdots\!25}a^{34}+\frac{21\!\cdots\!01}{71\!\cdots\!25}a^{32}-\frac{13\!\cdots\!46}{14\!\cdots\!25}a^{31}+\frac{13\!\cdots\!47}{71\!\cdots\!25}a^{30}+\frac{75\!\cdots\!22}{71\!\cdots\!25}a^{29}-\frac{39\!\cdots\!77}{79\!\cdots\!25}a^{28}+\frac{91\!\cdots\!17}{71\!\cdots\!25}a^{27}+\frac{38\!\cdots\!38}{71\!\cdots\!25}a^{26}-\frac{40\!\cdots\!11}{71\!\cdots\!25}a^{25}+\frac{11\!\cdots\!77}{71\!\cdots\!25}a^{24}-\frac{55\!\cdots\!36}{71\!\cdots\!25}a^{23}+\frac{79\!\cdots\!37}{79\!\cdots\!25}a^{22}-\frac{70\!\cdots\!16}{79\!\cdots\!25}a^{21}+\frac{29\!\cdots\!33}{79\!\cdots\!25}a^{20}+\frac{29\!\cdots\!04}{71\!\cdots\!25}a^{19}-\frac{15\!\cdots\!17}{71\!\cdots\!25}a^{18}-\frac{16\!\cdots\!16}{79\!\cdots\!25}a^{17}+\frac{13\!\cdots\!47}{71\!\cdots\!25}a^{16}-\frac{24\!\cdots\!46}{71\!\cdots\!25}a^{15}-\frac{62\!\cdots\!81}{23\!\cdots\!75}a^{14}-\frac{17\!\cdots\!94}{71\!\cdots\!25}a^{13}+\frac{51\!\cdots\!32}{23\!\cdots\!75}a^{12}-\frac{33\!\cdots\!49}{79\!\cdots\!25}a^{11}-\frac{30\!\cdots\!64}{71\!\cdots\!25}a^{10}+\frac{27\!\cdots\!26}{79\!\cdots\!25}a^{9}+\frac{60\!\cdots\!68}{14\!\cdots\!25}a^{8}-\frac{15\!\cdots\!88}{71\!\cdots\!25}a^{7}+\frac{26\!\cdots\!14}{14\!\cdots\!25}a^{6}-\frac{88\!\cdots\!08}{71\!\cdots\!25}a^{5}+\frac{38\!\cdots\!69}{14\!\cdots\!25}a^{4}-\frac{16\!\cdots\!24}{47\!\cdots\!75}a^{3}+\frac{95\!\cdots\!92}{28\!\cdots\!65}a^{2}-\frac{21\!\cdots\!04}{63\!\cdots\!05}a+\frac{20\!\cdots\!83}{57\!\cdots\!93}$, $\frac{1}{35\!\cdots\!25}a^{35}-\frac{2}{35\!\cdots\!25}a^{34}-\frac{10\!\cdots\!09}{71\!\cdots\!25}a^{32}+\frac{47\!\cdots\!79}{11\!\cdots\!75}a^{31}+\frac{14\!\cdots\!28}{35\!\cdots\!25}a^{30}+\frac{82\!\cdots\!61}{35\!\cdots\!25}a^{29}+\frac{27\!\cdots\!07}{14\!\cdots\!25}a^{28}+\frac{23\!\cdots\!51}{11\!\cdots\!75}a^{27}-\frac{85\!\cdots\!27}{35\!\cdots\!25}a^{26}+\frac{48\!\cdots\!52}{11\!\cdots\!75}a^{25}-\frac{23\!\cdots\!93}{35\!\cdots\!25}a^{24}-\frac{13\!\cdots\!21}{35\!\cdots\!25}a^{23}+\frac{10\!\cdots\!68}{35\!\cdots\!25}a^{22}-\frac{25\!\cdots\!49}{35\!\cdots\!25}a^{21}+\frac{66\!\cdots\!69}{11\!\cdots\!75}a^{20}+\frac{25\!\cdots\!54}{35\!\cdots\!25}a^{19}-\frac{19\!\cdots\!07}{35\!\cdots\!25}a^{18}+\frac{22\!\cdots\!51}{35\!\cdots\!25}a^{17}-\frac{12\!\cdots\!93}{35\!\cdots\!25}a^{16}+\frac{15\!\cdots\!78}{35\!\cdots\!25}a^{15}+\frac{73\!\cdots\!03}{23\!\cdots\!75}a^{14}+\frac{20\!\cdots\!42}{11\!\cdots\!75}a^{13}-\frac{23\!\cdots\!66}{11\!\cdots\!75}a^{12}-\frac{12\!\cdots\!83}{35\!\cdots\!25}a^{11}-\frac{34\!\cdots\!37}{71\!\cdots\!25}a^{10}-\frac{55\!\cdots\!39}{23\!\cdots\!75}a^{9}-\frac{16\!\cdots\!68}{35\!\cdots\!25}a^{8}+\frac{11\!\cdots\!01}{35\!\cdots\!25}a^{7}-\frac{46\!\cdots\!86}{71\!\cdots\!25}a^{6}+\frac{25\!\cdots\!41}{79\!\cdots\!25}a^{5}+\frac{65\!\cdots\!37}{19\!\cdots\!31}a^{4}-\frac{64\!\cdots\!36}{14\!\cdots\!25}a^{3}-\frac{21\!\cdots\!24}{28\!\cdots\!65}a^{2}-\frac{37\!\cdots\!26}{63\!\cdots\!77}a+\frac{21\!\cdots\!21}{63\!\cdots\!77}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{1529675792647203592371367824}{1509070112336893839802187576125} a^{35} - \frac{2128475482097739277333530123}{1509070112336893839802187576125} a^{34} - \frac{1860271780578874235707904501}{301814022467378767960437515225} a^{33} + \frac{3470455126671080483530959281}{301814022467378767960437515225} a^{32} + \frac{69678692014333417228584958038}{1509070112336893839802187576125} a^{31} - \frac{183737377313378345343946662728}{1509070112336893839802187576125} a^{30} - \frac{474005154716043154745667846746}{1509070112336893839802187576125} a^{29} + \frac{255636448652735319384537480857}{301814022467378767960437515225} a^{28} + \frac{3831170730794070845051907772392}{1509070112336893839802187576125} a^{27} - \frac{9556151328081885126135628364748}{1509070112336893839802187576125} a^{26} + \frac{15990843513924618540592267550729}{1509070112336893839802187576125} a^{25} + \frac{6716890258102472012619998325003}{1509070112336893839802187576125} a^{24} - \frac{146874812038963288015590817121}{6589825818065038601756277625} a^{23} - \frac{14424469064164477289945761706178}{1509070112336893839802187576125} a^{22} + \frac{102553262123779901090085392838504}{1509070112336893839802187576125} a^{21} - \frac{211756674502639474607278792035222}{1509070112336893839802187576125} a^{20} + \frac{85524523231164836168553487175166}{1509070112336893839802187576125} a^{19} + \frac{190708653922073866345521212735897}{1509070112336893839802187576125} a^{18} - \frac{158675113623548267684112525234046}{1509070112336893839802187576125} a^{17} - \frac{99534338453424602935446187842597}{1509070112336893839802187576125} a^{16} + \frac{753675974684079437522126397432842}{1509070112336893839802187576125} a^{15} - \frac{156245167770608601011754106094561}{301814022467378767960437515225} a^{14} + \frac{389722194827673623941859553076909}{1509070112336893839802187576125} a^{13} - \frac{133651832627161099211484071778102}{1509070112336893839802187576125} a^{12} - \frac{205577453386190549627479671802872}{1509070112336893839802187576125} a^{11} + \frac{4543539631631074681703121521931}{12072560898695150718417500609} a^{10} - \frac{19377044561503626330264964844426}{60362804493475753592087503045} a^{9} + \frac{176280103957786321583403535739318}{1509070112336893839802187576125} a^{8} - \frac{82720028491445091955244574889726}{1509070112336893839802187576125} a^{7} - \frac{7362323895971542137255270749101}{301814022467378767960437515225} a^{6} + \frac{3587449217833937775980956675278}{60362804493475753592087503045} a^{5} - \frac{2986649661667157763291580371898}{60362804493475753592087503045} a^{4} + \frac{243039962807001284558080366011}{12072560898695150718417500609} a^{3} - \frac{862017102176101643397060906153}{60362804493475753592087503045} a^{2} + \frac{35048141762387531138392391470}{12072560898695150718417500609} a - \frac{7948708478186419277400271510}{12072560898695150718417500609} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{97\!\cdots\!23}{15\!\cdots\!25}a^{35}-\frac{21\!\cdots\!01}{15\!\cdots\!25}a^{34}-\frac{96\!\cdots\!93}{30\!\cdots\!25}a^{33}+\frac{32\!\cdots\!29}{30\!\cdots\!25}a^{32}+\frac{35\!\cdots\!16}{15\!\cdots\!25}a^{31}-\frac{15\!\cdots\!66}{15\!\cdots\!25}a^{30}-\frac{20\!\cdots\!37}{15\!\cdots\!25}a^{29}+\frac{21\!\cdots\!86}{30\!\cdots\!25}a^{28}+\frac{17\!\cdots\!34}{15\!\cdots\!25}a^{27}-\frac{81\!\cdots\!81}{15\!\cdots\!25}a^{26}+\frac{15\!\cdots\!23}{15\!\cdots\!25}a^{25}-\frac{38\!\cdots\!54}{15\!\cdots\!25}a^{24}-\frac{25\!\cdots\!03}{15\!\cdots\!25}a^{23}+\frac{92\!\cdots\!24}{15\!\cdots\!25}a^{22}+\frac{73\!\cdots\!18}{15\!\cdots\!25}a^{21}-\frac{19\!\cdots\!74}{15\!\cdots\!25}a^{20}+\frac{16\!\cdots\!72}{15\!\cdots\!25}a^{19}+\frac{83\!\cdots\!49}{15\!\cdots\!25}a^{18}-\frac{21\!\cdots\!32}{15\!\cdots\!25}a^{17}+\frac{20\!\cdots\!76}{15\!\cdots\!25}a^{16}+\frac{54\!\cdots\!24}{15\!\cdots\!25}a^{15}-\frac{36\!\cdots\!33}{60\!\cdots\!45}a^{14}+\frac{64\!\cdots\!08}{15\!\cdots\!25}a^{13}-\frac{24\!\cdots\!19}{15\!\cdots\!25}a^{12}-\frac{93\!\cdots\!19}{15\!\cdots\!25}a^{11}+\frac{95\!\cdots\!53}{30\!\cdots\!25}a^{10}-\frac{11\!\cdots\!89}{30\!\cdots\!25}a^{9}+\frac{36\!\cdots\!96}{15\!\cdots\!25}a^{8}-\frac{11\!\cdots\!62}{15\!\cdots\!25}a^{7}-\frac{13\!\cdots\!69}{30\!\cdots\!25}a^{6}+\frac{15\!\cdots\!49}{30\!\cdots\!25}a^{5}-\frac{18\!\cdots\!84}{30\!\cdots\!25}a^{4}+\frac{24\!\cdots\!22}{60\!\cdots\!45}a^{3}-\frac{19\!\cdots\!27}{12\!\cdots\!09}a^{2}+\frac{75\!\cdots\!51}{12\!\cdots\!09}a-\frac{12\!\cdots\!91}{12\!\cdots\!09}$, $\frac{13\!\cdots\!06}{35\!\cdots\!25}a^{35}-\frac{15\!\cdots\!23}{39\!\cdots\!25}a^{34}-\frac{15\!\cdots\!77}{71\!\cdots\!25}a^{33}+\frac{81\!\cdots\!62}{23\!\cdots\!75}a^{32}+\frac{60\!\cdots\!47}{35\!\cdots\!25}a^{31}-\frac{13\!\cdots\!72}{35\!\cdots\!25}a^{30}-\frac{42\!\cdots\!69}{35\!\cdots\!25}a^{29}+\frac{18\!\cdots\!46}{71\!\cdots\!25}a^{28}+\frac{33\!\cdots\!68}{35\!\cdots\!25}a^{27}-\frac{68\!\cdots\!22}{35\!\cdots\!25}a^{26}+\frac{50\!\cdots\!67}{11\!\cdots\!75}a^{25}+\frac{83\!\cdots\!47}{35\!\cdots\!25}a^{24}-\frac{21\!\cdots\!66}{35\!\cdots\!25}a^{23}-\frac{86\!\cdots\!97}{35\!\cdots\!25}a^{22}+\frac{77\!\cdots\!21}{35\!\cdots\!25}a^{21}-\frac{19\!\cdots\!53}{35\!\cdots\!25}a^{20}+\frac{54\!\cdots\!09}{35\!\cdots\!25}a^{19}+\frac{11\!\cdots\!03}{35\!\cdots\!25}a^{18}-\frac{50\!\cdots\!93}{11\!\cdots\!75}a^{17}-\frac{44\!\cdots\!53}{35\!\cdots\!25}a^{16}+\frac{71\!\cdots\!53}{35\!\cdots\!25}a^{15}-\frac{11\!\cdots\!28}{71\!\cdots\!25}a^{14}+\frac{50\!\cdots\!06}{35\!\cdots\!25}a^{13}+\frac{17\!\cdots\!89}{11\!\cdots\!75}a^{12}-\frac{13\!\cdots\!38}{35\!\cdots\!25}a^{11}+\frac{46\!\cdots\!61}{47\!\cdots\!75}a^{10}-\frac{62\!\cdots\!22}{71\!\cdots\!25}a^{9}+\frac{31\!\cdots\!42}{35\!\cdots\!25}a^{8}-\frac{25\!\cdots\!59}{35\!\cdots\!25}a^{7}-\frac{84\!\cdots\!68}{14\!\cdots\!25}a^{6}+\frac{48\!\cdots\!78}{23\!\cdots\!75}a^{5}-\frac{35\!\cdots\!04}{28\!\cdots\!65}a^{4}+\frac{26\!\cdots\!79}{14\!\cdots\!25}a^{3}-\frac{23\!\cdots\!11}{31\!\cdots\!85}a^{2}+\frac{41\!\cdots\!45}{57\!\cdots\!93}a-\frac{48\!\cdots\!87}{57\!\cdots\!93}$, $\frac{66\!\cdots\!54}{35\!\cdots\!25}a^{35}-\frac{10\!\cdots\!28}{35\!\cdots\!25}a^{34}-\frac{26\!\cdots\!97}{23\!\cdots\!75}a^{33}+\frac{54\!\cdots\!24}{23\!\cdots\!75}a^{32}+\frac{29\!\cdots\!73}{35\!\cdots\!25}a^{31}-\frac{84\!\cdots\!03}{35\!\cdots\!25}a^{30}-\frac{21\!\cdots\!84}{39\!\cdots\!25}a^{29}+\frac{11\!\cdots\!04}{71\!\cdots\!25}a^{28}+\frac{15\!\cdots\!92}{35\!\cdots\!25}a^{27}-\frac{44\!\cdots\!93}{35\!\cdots\!25}a^{26}+\frac{24\!\cdots\!68}{11\!\cdots\!75}a^{25}+\frac{27\!\cdots\!73}{35\!\cdots\!25}a^{24}-\frac{15\!\cdots\!69}{35\!\cdots\!25}a^{23}-\frac{37\!\cdots\!98}{35\!\cdots\!25}a^{22}+\frac{48\!\cdots\!39}{35\!\cdots\!25}a^{21}-\frac{98\!\cdots\!77}{35\!\cdots\!25}a^{20}+\frac{41\!\cdots\!56}{35\!\cdots\!25}a^{19}+\frac{90\!\cdots\!27}{35\!\cdots\!25}a^{18}-\frac{30\!\cdots\!12}{11\!\cdots\!75}a^{17}-\frac{54\!\cdots\!78}{39\!\cdots\!25}a^{16}+\frac{35\!\cdots\!52}{35\!\cdots\!25}a^{15}-\frac{82\!\cdots\!66}{79\!\cdots\!25}a^{14}+\frac{17\!\cdots\!94}{35\!\cdots\!25}a^{13}-\frac{72\!\cdots\!29}{11\!\cdots\!75}a^{12}-\frac{87\!\cdots\!92}{35\!\cdots\!25}a^{11}+\frac{52\!\cdots\!01}{71\!\cdots\!25}a^{10}-\frac{15\!\cdots\!02}{23\!\cdots\!75}a^{9}+\frac{80\!\cdots\!53}{35\!\cdots\!25}a^{8}+\frac{18\!\cdots\!88}{11\!\cdots\!75}a^{7}-\frac{26\!\cdots\!11}{71\!\cdots\!25}a^{6}+\frac{87\!\cdots\!62}{71\!\cdots\!25}a^{5}-\frac{14\!\cdots\!33}{14\!\cdots\!25}a^{4}+\frac{11\!\cdots\!96}{28\!\cdots\!65}a^{3}-\frac{21\!\cdots\!49}{28\!\cdots\!65}a^{2}+\frac{69\!\cdots\!78}{95\!\cdots\!55}a+\frac{11\!\cdots\!16}{57\!\cdots\!93}$, $\frac{61\!\cdots\!46}{14\!\cdots\!25}a^{35}-\frac{17\!\cdots\!09}{23\!\cdots\!75}a^{34}-\frac{57\!\cdots\!27}{23\!\cdots\!75}a^{33}+\frac{81\!\cdots\!84}{14\!\cdots\!25}a^{32}+\frac{25\!\cdots\!02}{14\!\cdots\!25}a^{31}-\frac{13\!\cdots\!78}{23\!\cdots\!75}a^{30}-\frac{83\!\cdots\!76}{71\!\cdots\!25}a^{29}+\frac{95\!\cdots\!61}{23\!\cdots\!75}a^{28}+\frac{13\!\cdots\!66}{14\!\cdots\!25}a^{27}-\frac{21\!\cdots\!46}{71\!\cdots\!25}a^{26}+\frac{12\!\cdots\!78}{23\!\cdots\!75}a^{25}+\frac{61\!\cdots\!48}{71\!\cdots\!25}a^{24}-\frac{73\!\cdots\!24}{71\!\cdots\!25}a^{23}-\frac{15\!\cdots\!76}{23\!\cdots\!75}a^{22}+\frac{24\!\cdots\!86}{79\!\cdots\!25}a^{21}-\frac{49\!\cdots\!57}{71\!\cdots\!25}a^{20}+\frac{27\!\cdots\!51}{71\!\cdots\!25}a^{19}+\frac{36\!\cdots\!47}{71\!\cdots\!25}a^{18}-\frac{48\!\cdots\!51}{71\!\cdots\!25}a^{17}-\frac{13\!\cdots\!82}{71\!\cdots\!25}a^{16}+\frac{16\!\cdots\!71}{71\!\cdots\!25}a^{15}-\frac{66\!\cdots\!67}{23\!\cdots\!75}a^{14}+\frac{23\!\cdots\!26}{14\!\cdots\!25}a^{13}-\frac{73\!\cdots\!59}{23\!\cdots\!75}a^{12}-\frac{39\!\cdots\!59}{71\!\cdots\!25}a^{11}+\frac{42\!\cdots\!27}{23\!\cdots\!75}a^{10}-\frac{17\!\cdots\!57}{95\!\cdots\!55}a^{9}+\frac{13\!\cdots\!73}{15\!\cdots\!25}a^{8}-\frac{87\!\cdots\!29}{71\!\cdots\!25}a^{7}-\frac{20\!\cdots\!69}{23\!\cdots\!75}a^{6}+\frac{41\!\cdots\!88}{14\!\cdots\!25}a^{5}-\frac{42\!\cdots\!41}{14\!\cdots\!25}a^{4}+\frac{38\!\cdots\!11}{28\!\cdots\!65}a^{3}-\frac{45\!\cdots\!16}{95\!\cdots\!55}a^{2}+\frac{38\!\cdots\!12}{19\!\cdots\!31}a-\frac{32\!\cdots\!94}{57\!\cdots\!93}$, $\frac{17\!\cdots\!63}{35\!\cdots\!25}a^{35}+\frac{12\!\cdots\!04}{35\!\cdots\!25}a^{34}-\frac{68\!\cdots\!29}{71\!\cdots\!25}a^{33}-\frac{15\!\cdots\!13}{71\!\cdots\!25}a^{32}+\frac{27\!\cdots\!56}{35\!\cdots\!25}a^{31}+\frac{57\!\cdots\!86}{39\!\cdots\!25}a^{30}-\frac{85\!\cdots\!29}{11\!\cdots\!75}a^{29}-\frac{15\!\cdots\!38}{15\!\cdots\!25}a^{28}+\frac{63\!\cdots\!68}{11\!\cdots\!75}a^{27}+\frac{28\!\cdots\!64}{35\!\cdots\!25}a^{26}-\frac{30\!\cdots\!04}{11\!\cdots\!75}a^{25}+\frac{14\!\cdots\!16}{35\!\cdots\!25}a^{24}+\frac{63\!\cdots\!77}{35\!\cdots\!25}a^{23}-\frac{45\!\cdots\!41}{35\!\cdots\!25}a^{22}-\frac{67\!\cdots\!12}{35\!\cdots\!25}a^{21}+\frac{11\!\cdots\!24}{39\!\cdots\!25}a^{20}-\frac{19\!\cdots\!23}{35\!\cdots\!25}a^{19}+\frac{63\!\cdots\!84}{35\!\cdots\!25}a^{18}+\frac{29\!\cdots\!38}{35\!\cdots\!25}a^{17}-\frac{20\!\cdots\!09}{35\!\cdots\!25}a^{16}-\frac{16\!\cdots\!11}{35\!\cdots\!25}a^{15}+\frac{14\!\cdots\!46}{71\!\cdots\!25}a^{14}-\frac{23\!\cdots\!89}{11\!\cdots\!75}a^{13}-\frac{11\!\cdots\!66}{39\!\cdots\!25}a^{12}+\frac{16\!\cdots\!21}{35\!\cdots\!25}a^{11}-\frac{34\!\cdots\!93}{71\!\cdots\!25}a^{10}+\frac{17\!\cdots\!96}{14\!\cdots\!25}a^{9}-\frac{40\!\cdots\!09}{35\!\cdots\!25}a^{8}-\frac{37\!\cdots\!28}{39\!\cdots\!25}a^{7}+\frac{78\!\cdots\!54}{71\!\cdots\!25}a^{6}-\frac{62\!\cdots\!52}{14\!\cdots\!25}a^{5}+\frac{68\!\cdots\!19}{47\!\cdots\!75}a^{4}-\frac{29\!\cdots\!76}{14\!\cdots\!25}a^{3}+\frac{20\!\cdots\!14}{28\!\cdots\!65}a^{2}-\frac{88\!\cdots\!18}{28\!\cdots\!65}a+\frac{20\!\cdots\!52}{63\!\cdots\!77}$, $\frac{12\!\cdots\!21}{11\!\cdots\!75}a^{35}+\frac{46\!\cdots\!74}{35\!\cdots\!25}a^{34}-\frac{44\!\cdots\!44}{47\!\cdots\!75}a^{33}-\frac{36\!\cdots\!92}{71\!\cdots\!25}a^{32}+\frac{26\!\cdots\!06}{35\!\cdots\!25}a^{31}+\frac{88\!\cdots\!14}{35\!\cdots\!25}a^{30}-\frac{22\!\cdots\!32}{35\!\cdots\!25}a^{29}-\frac{15\!\cdots\!28}{47\!\cdots\!75}a^{28}+\frac{16\!\cdots\!64}{35\!\cdots\!25}a^{27}+\frac{24\!\cdots\!74}{35\!\cdots\!25}a^{26}-\frac{12\!\cdots\!97}{35\!\cdots\!25}a^{25}+\frac{11\!\cdots\!66}{35\!\cdots\!25}a^{24}-\frac{11\!\cdots\!48}{35\!\cdots\!25}a^{23}-\frac{24\!\cdots\!49}{39\!\cdots\!25}a^{22}+\frac{45\!\cdots\!21}{11\!\cdots\!75}a^{21}+\frac{26\!\cdots\!72}{11\!\cdots\!75}a^{20}-\frac{10\!\cdots\!48}{35\!\cdots\!25}a^{19}+\frac{69\!\cdots\!84}{35\!\cdots\!25}a^{18}+\frac{84\!\cdots\!57}{39\!\cdots\!25}a^{17}-\frac{11\!\cdots\!09}{35\!\cdots\!25}a^{16}+\frac{11\!\cdots\!14}{35\!\cdots\!25}a^{15}+\frac{62\!\cdots\!78}{79\!\cdots\!25}a^{14}-\frac{26\!\cdots\!37}{35\!\cdots\!25}a^{13}+\frac{20\!\cdots\!39}{39\!\cdots\!25}a^{12}-\frac{31\!\cdots\!56}{39\!\cdots\!25}a^{11}+\frac{47\!\cdots\!39}{71\!\cdots\!25}a^{10}+\frac{15\!\cdots\!18}{23\!\cdots\!75}a^{9}-\frac{16\!\cdots\!59}{35\!\cdots\!25}a^{8}+\frac{74\!\cdots\!88}{35\!\cdots\!25}a^{7}+\frac{36\!\cdots\!22}{71\!\cdots\!25}a^{6}+\frac{39\!\cdots\!22}{71\!\cdots\!25}a^{5}+\frac{16\!\cdots\!31}{14\!\cdots\!25}a^{4}-\frac{10\!\cdots\!92}{15\!\cdots\!25}a^{3}+\frac{78\!\cdots\!88}{28\!\cdots\!65}a^{2}-\frac{13\!\cdots\!51}{19\!\cdots\!31}a+\frac{18\!\cdots\!45}{57\!\cdots\!93}$, $\frac{17\!\cdots\!42}{79\!\cdots\!25}a^{35}-\frac{30\!\cdots\!99}{79\!\cdots\!25}a^{34}-\frac{30\!\cdots\!61}{23\!\cdots\!75}a^{33}+\frac{24\!\cdots\!09}{79\!\cdots\!25}a^{32}+\frac{75\!\cdots\!14}{79\!\cdots\!25}a^{31}-\frac{24\!\cdots\!44}{79\!\cdots\!25}a^{30}-\frac{49\!\cdots\!57}{79\!\cdots\!25}a^{29}+\frac{51\!\cdots\!97}{23\!\cdots\!75}a^{28}+\frac{12\!\cdots\!27}{23\!\cdots\!75}a^{27}-\frac{12\!\cdots\!34}{79\!\cdots\!25}a^{26}+\frac{66\!\cdots\!28}{23\!\cdots\!75}a^{25}+\frac{10\!\cdots\!84}{23\!\cdots\!75}a^{24}-\frac{13\!\cdots\!97}{23\!\cdots\!75}a^{23}-\frac{90\!\cdots\!79}{23\!\cdots\!75}a^{22}+\frac{13\!\cdots\!64}{79\!\cdots\!25}a^{21}-\frac{29\!\cdots\!32}{79\!\cdots\!25}a^{20}+\frac{16\!\cdots\!61}{79\!\cdots\!25}a^{19}+\frac{67\!\cdots\!46}{23\!\cdots\!75}a^{18}-\frac{86\!\cdots\!58}{23\!\cdots\!75}a^{17}-\frac{26\!\cdots\!96}{23\!\cdots\!75}a^{16}+\frac{97\!\cdots\!94}{79\!\cdots\!25}a^{15}-\frac{78\!\cdots\!19}{52\!\cdots\!75}a^{14}+\frac{65\!\cdots\!76}{79\!\cdots\!25}a^{13}-\frac{36\!\cdots\!73}{23\!\cdots\!75}a^{12}-\frac{24\!\cdots\!28}{79\!\cdots\!25}a^{11}+\frac{75\!\cdots\!26}{79\!\cdots\!25}a^{10}-\frac{23\!\cdots\!37}{23\!\cdots\!75}a^{9}+\frac{97\!\cdots\!82}{23\!\cdots\!75}a^{8}-\frac{14\!\cdots\!69}{23\!\cdots\!75}a^{7}-\frac{11\!\cdots\!52}{23\!\cdots\!75}a^{6}+\frac{52\!\cdots\!22}{34\!\cdots\!25}a^{5}-\frac{74\!\cdots\!81}{47\!\cdots\!75}a^{4}+\frac{33\!\cdots\!56}{47\!\cdots\!75}a^{3}-\frac{24\!\cdots\!43}{95\!\cdots\!55}a^{2}+\frac{32\!\cdots\!22}{31\!\cdots\!85}a-\frac{52\!\cdots\!86}{19\!\cdots\!31}$, $\frac{14\!\cdots\!39}{35\!\cdots\!25}a^{35}-\frac{22\!\cdots\!63}{35\!\cdots\!25}a^{34}-\frac{16\!\cdots\!37}{71\!\cdots\!25}a^{33}+\frac{35\!\cdots\!31}{71\!\cdots\!25}a^{32}+\frac{61\!\cdots\!93}{35\!\cdots\!25}a^{31}-\frac{20\!\cdots\!42}{39\!\cdots\!25}a^{30}-\frac{13\!\cdots\!37}{11\!\cdots\!75}a^{29}+\frac{16\!\cdots\!64}{47\!\cdots\!75}a^{28}+\frac{11\!\cdots\!79}{11\!\cdots\!75}a^{27}-\frac{95\!\cdots\!33}{35\!\cdots\!25}a^{26}+\frac{54\!\cdots\!63}{11\!\cdots\!75}a^{25}+\frac{41\!\cdots\!73}{35\!\cdots\!25}a^{24}-\frac{32\!\cdots\!44}{35\!\cdots\!25}a^{23}-\frac{66\!\cdots\!23}{35\!\cdots\!25}a^{22}+\frac{99\!\cdots\!89}{35\!\cdots\!25}a^{21}-\frac{71\!\cdots\!84}{11\!\cdots\!75}a^{20}+\frac{10\!\cdots\!06}{35\!\cdots\!25}a^{19}+\frac{17\!\cdots\!02}{35\!\cdots\!25}a^{18}-\frac{19\!\cdots\!11}{35\!\cdots\!25}a^{17}-\frac{73\!\cdots\!02}{35\!\cdots\!25}a^{16}+\frac{73\!\cdots\!17}{35\!\cdots\!25}a^{15}-\frac{16\!\cdots\!77}{71\!\cdots\!25}a^{14}+\frac{15\!\cdots\!83}{11\!\cdots\!75}a^{13}-\frac{39\!\cdots\!94}{11\!\cdots\!75}a^{12}-\frac{18\!\cdots\!62}{35\!\cdots\!25}a^{11}+\frac{11\!\cdots\!51}{71\!\cdots\!25}a^{10}-\frac{22\!\cdots\!84}{14\!\cdots\!25}a^{9}+\frac{23\!\cdots\!98}{35\!\cdots\!25}a^{8}-\frac{54\!\cdots\!84}{39\!\cdots\!25}a^{7}-\frac{62\!\cdots\!18}{71\!\cdots\!25}a^{6}+\frac{38\!\cdots\!04}{14\!\cdots\!25}a^{5}-\frac{39\!\cdots\!46}{15\!\cdots\!25}a^{4}+\frac{15\!\cdots\!52}{14\!\cdots\!25}a^{3}-\frac{11\!\cdots\!69}{28\!\cdots\!65}a^{2}+\frac{46\!\cdots\!61}{28\!\cdots\!65}a-\frac{22\!\cdots\!29}{63\!\cdots\!77}$, $\frac{96\!\cdots\!34}{11\!\cdots\!75}a^{35}-\frac{15\!\cdots\!03}{11\!\cdots\!75}a^{34}-\frac{32\!\cdots\!71}{71\!\cdots\!25}a^{33}+\frac{75\!\cdots\!88}{71\!\cdots\!25}a^{32}+\frac{40\!\cdots\!58}{11\!\cdots\!75}a^{31}-\frac{38\!\cdots\!04}{35\!\cdots\!25}a^{30}-\frac{78\!\cdots\!48}{35\!\cdots\!25}a^{29}+\frac{10\!\cdots\!78}{14\!\cdots\!25}a^{28}+\frac{12\!\cdots\!97}{67\!\cdots\!25}a^{27}-\frac{12\!\cdots\!91}{22\!\cdots\!75}a^{26}+\frac{36\!\cdots\!27}{35\!\cdots\!25}a^{25}+\frac{18\!\cdots\!88}{11\!\cdots\!75}a^{24}-\frac{66\!\cdots\!92}{35\!\cdots\!25}a^{23}-\frac{41\!\cdots\!96}{39\!\cdots\!25}a^{22}+\frac{22\!\cdots\!28}{39\!\cdots\!25}a^{21}-\frac{51\!\cdots\!54}{39\!\cdots\!25}a^{20}+\frac{29\!\cdots\!62}{39\!\cdots\!25}a^{19}+\frac{31\!\cdots\!36}{35\!\cdots\!25}a^{18}-\frac{15\!\cdots\!16}{11\!\cdots\!75}a^{17}-\frac{32\!\cdots\!12}{11\!\cdots\!75}a^{16}+\frac{15\!\cdots\!31}{35\!\cdots\!25}a^{15}-\frac{37\!\cdots\!46}{71\!\cdots\!25}a^{14}+\frac{11\!\cdots\!82}{35\!\cdots\!25}a^{13}-\frac{26\!\cdots\!39}{39\!\cdots\!25}a^{12}-\frac{11\!\cdots\!47}{11\!\cdots\!75}a^{11}+\frac{82\!\cdots\!91}{23\!\cdots\!75}a^{10}-\frac{19\!\cdots\!52}{57\!\cdots\!93}a^{9}+\frac{62\!\cdots\!14}{35\!\cdots\!25}a^{8}-\frac{10\!\cdots\!12}{39\!\cdots\!25}a^{7}-\frac{10\!\cdots\!24}{71\!\cdots\!25}a^{6}+\frac{27\!\cdots\!76}{47\!\cdots\!75}a^{5}-\frac{77\!\cdots\!73}{14\!\cdots\!25}a^{4}+\frac{13\!\cdots\!87}{47\!\cdots\!75}a^{3}-\frac{89\!\cdots\!62}{95\!\cdots\!55}a^{2}+\frac{12\!\cdots\!23}{28\!\cdots\!65}a-\frac{46\!\cdots\!77}{57\!\cdots\!93}$, $\frac{41\!\cdots\!31}{35\!\cdots\!25}a^{35}-\frac{95\!\cdots\!37}{35\!\cdots\!25}a^{34}-\frac{82\!\cdots\!36}{14\!\cdots\!25}a^{33}+\frac{14\!\cdots\!56}{71\!\cdots\!25}a^{32}+\frac{14\!\cdots\!72}{35\!\cdots\!25}a^{31}-\frac{12\!\cdots\!94}{67\!\cdots\!25}a^{30}-\frac{28\!\cdots\!28}{11\!\cdots\!75}a^{29}+\frac{19\!\cdots\!51}{14\!\cdots\!25}a^{28}+\frac{72\!\cdots\!93}{35\!\cdots\!25}a^{27}-\frac{12\!\cdots\!04}{11\!\cdots\!75}a^{26}+\frac{22\!\cdots\!62}{11\!\cdots\!75}a^{25}-\frac{42\!\cdots\!61}{11\!\cdots\!75}a^{24}-\frac{11\!\cdots\!51}{35\!\cdots\!25}a^{23}+\frac{58\!\cdots\!12}{39\!\cdots\!25}a^{22}+\frac{38\!\cdots\!59}{39\!\cdots\!25}a^{21}-\frac{85\!\cdots\!08}{35\!\cdots\!25}a^{20}+\frac{22\!\cdots\!58}{11\!\cdots\!75}a^{19}+\frac{46\!\cdots\!83}{35\!\cdots\!25}a^{18}-\frac{10\!\cdots\!94}{35\!\cdots\!25}a^{17}-\frac{50\!\cdots\!33}{35\!\cdots\!25}a^{16}+\frac{85\!\cdots\!56}{11\!\cdots\!75}a^{15}-\frac{78\!\cdots\!11}{71\!\cdots\!25}a^{14}+\frac{25\!\cdots\!06}{35\!\cdots\!25}a^{13}-\frac{10\!\cdots\!71}{11\!\cdots\!75}a^{12}-\frac{55\!\cdots\!98}{35\!\cdots\!25}a^{11}+\frac{41\!\cdots\!23}{71\!\cdots\!25}a^{10}-\frac{52\!\cdots\!72}{71\!\cdots\!25}a^{9}+\frac{45\!\cdots\!14}{11\!\cdots\!75}a^{8}-\frac{29\!\cdots\!98}{11\!\cdots\!75}a^{7}-\frac{47\!\cdots\!82}{23\!\cdots\!75}a^{6}+\frac{76\!\cdots\!11}{79\!\cdots\!25}a^{5}-\frac{16\!\cdots\!89}{14\!\cdots\!25}a^{4}+\frac{91\!\cdots\!64}{14\!\cdots\!25}a^{3}-\frac{94\!\cdots\!78}{57\!\cdots\!93}a^{2}+\frac{49\!\cdots\!80}{57\!\cdots\!93}a-\frac{10\!\cdots\!26}{57\!\cdots\!93}$, $\frac{58\!\cdots\!21}{35\!\cdots\!25}a^{35}-\frac{81\!\cdots\!17}{35\!\cdots\!25}a^{34}+\frac{13\!\cdots\!97}{79\!\cdots\!25}a^{33}+\frac{22\!\cdots\!73}{14\!\cdots\!25}a^{32}-\frac{58\!\cdots\!91}{11\!\cdots\!75}a^{31}-\frac{44\!\cdots\!87}{35\!\cdots\!25}a^{30}+\frac{40\!\cdots\!36}{35\!\cdots\!25}a^{29}+\frac{65\!\cdots\!64}{71\!\cdots\!25}a^{28}-\frac{82\!\cdots\!74}{11\!\cdots\!75}a^{27}-\frac{28\!\cdots\!13}{39\!\cdots\!25}a^{26}+\frac{34\!\cdots\!96}{35\!\cdots\!25}a^{25}-\frac{15\!\cdots\!86}{11\!\cdots\!75}a^{24}-\frac{10\!\cdots\!39}{39\!\cdots\!25}a^{23}+\frac{98\!\cdots\!83}{35\!\cdots\!25}a^{22}+\frac{20\!\cdots\!81}{35\!\cdots\!25}a^{21}-\frac{46\!\cdots\!33}{35\!\cdots\!25}a^{20}+\frac{45\!\cdots\!36}{22\!\cdots\!75}a^{19}+\frac{18\!\cdots\!62}{22\!\cdots\!75}a^{18}-\frac{10\!\cdots\!16}{39\!\cdots\!25}a^{17}+\frac{34\!\cdots\!67}{35\!\cdots\!25}a^{16}+\frac{98\!\cdots\!28}{35\!\cdots\!25}a^{15}-\frac{18\!\cdots\!34}{19\!\cdots\!31}a^{14}+\frac{12\!\cdots\!41}{35\!\cdots\!25}a^{13}-\frac{61\!\cdots\!62}{39\!\cdots\!25}a^{12}-\frac{21\!\cdots\!28}{35\!\cdots\!25}a^{11}+\frac{22\!\cdots\!39}{71\!\cdots\!25}a^{10}-\frac{14\!\cdots\!42}{23\!\cdots\!75}a^{9}+\frac{19\!\cdots\!99}{11\!\cdots\!75}a^{8}-\frac{19\!\cdots\!04}{35\!\cdots\!25}a^{7}+\frac{90\!\cdots\!58}{14\!\cdots\!25}a^{6}+\frac{38\!\cdots\!97}{71\!\cdots\!25}a^{5}-\frac{12\!\cdots\!37}{14\!\cdots\!25}a^{4}+\frac{41\!\cdots\!91}{14\!\cdots\!25}a^{3}-\frac{39\!\cdots\!67}{28\!\cdots\!65}a^{2}+\frac{81\!\cdots\!19}{95\!\cdots\!55}a-\frac{14\!\cdots\!32}{57\!\cdots\!93}$, $\frac{52\!\cdots\!43}{35\!\cdots\!25}a^{35}+\frac{27\!\cdots\!16}{39\!\cdots\!25}a^{34}-\frac{24\!\cdots\!12}{71\!\cdots\!25}a^{33}-\frac{33\!\cdots\!82}{71\!\cdots\!25}a^{32}+\frac{14\!\cdots\!41}{35\!\cdots\!25}a^{31}+\frac{12\!\cdots\!64}{35\!\cdots\!25}a^{30}-\frac{21\!\cdots\!68}{39\!\cdots\!25}a^{29}-\frac{19\!\cdots\!84}{71\!\cdots\!25}a^{28}+\frac{24\!\cdots\!18}{67\!\cdots\!25}a^{27}+\frac{76\!\cdots\!29}{35\!\cdots\!25}a^{26}-\frac{77\!\cdots\!52}{35\!\cdots\!25}a^{25}+\frac{15\!\cdots\!56}{35\!\cdots\!25}a^{24}+\frac{10\!\cdots\!44}{11\!\cdots\!75}a^{23}-\frac{10\!\cdots\!77}{11\!\cdots\!75}a^{22}-\frac{67\!\cdots\!13}{39\!\cdots\!25}a^{21}+\frac{11\!\cdots\!31}{35\!\cdots\!25}a^{20}-\frac{20\!\cdots\!18}{35\!\cdots\!25}a^{19}-\frac{43\!\cdots\!02}{11\!\cdots\!75}a^{18}+\frac{27\!\cdots\!58}{35\!\cdots\!25}a^{17}+\frac{31\!\cdots\!31}{35\!\cdots\!25}a^{16}-\frac{79\!\cdots\!62}{11\!\cdots\!75}a^{15}+\frac{39\!\cdots\!12}{14\!\cdots\!25}a^{14}-\frac{98\!\cdots\!73}{39\!\cdots\!25}a^{13}+\frac{20\!\cdots\!72}{11\!\cdots\!75}a^{12}+\frac{12\!\cdots\!16}{35\!\cdots\!25}a^{11}-\frac{16\!\cdots\!63}{23\!\cdots\!75}a^{10}+\frac{14\!\cdots\!19}{71\!\cdots\!25}a^{9}-\frac{68\!\cdots\!49}{35\!\cdots\!25}a^{8}+\frac{16\!\cdots\!78}{35\!\cdots\!25}a^{7}-\frac{22\!\cdots\!57}{71\!\cdots\!25}a^{6}-\frac{75\!\cdots\!18}{71\!\cdots\!25}a^{5}+\frac{58\!\cdots\!64}{15\!\cdots\!25}a^{4}-\frac{10\!\cdots\!33}{14\!\cdots\!25}a^{3}+\frac{27\!\cdots\!67}{63\!\cdots\!77}a^{2}-\frac{24\!\cdots\!04}{57\!\cdots\!93}a+\frac{19\!\cdots\!21}{19\!\cdots\!31}$, $\frac{31\!\cdots\!34}{11\!\cdots\!75}a^{35}-\frac{17\!\cdots\!14}{35\!\cdots\!25}a^{34}-\frac{11\!\cdots\!36}{71\!\cdots\!25}a^{33}+\frac{27\!\cdots\!07}{71\!\cdots\!25}a^{32}+\frac{41\!\cdots\!99}{35\!\cdots\!25}a^{31}-\frac{15\!\cdots\!71}{39\!\cdots\!25}a^{30}-\frac{88\!\cdots\!36}{11\!\cdots\!75}a^{29}+\frac{19\!\cdots\!83}{71\!\cdots\!25}a^{28}+\frac{21\!\cdots\!31}{35\!\cdots\!25}a^{27}-\frac{72\!\cdots\!59}{35\!\cdots\!25}a^{26}+\frac{11\!\cdots\!07}{35\!\cdots\!25}a^{25}+\frac{18\!\cdots\!54}{35\!\cdots\!25}a^{24}-\frac{26\!\cdots\!12}{35\!\cdots\!25}a^{23}-\frac{15\!\cdots\!93}{11\!\cdots\!75}a^{22}+\frac{24\!\cdots\!74}{11\!\cdots\!75}a^{21}-\frac{16\!\cdots\!69}{39\!\cdots\!25}a^{20}+\frac{84\!\cdots\!88}{35\!\cdots\!25}a^{19}+\frac{14\!\cdots\!96}{35\!\cdots\!25}a^{18}-\frac{47\!\cdots\!76}{11\!\cdots\!75}a^{17}-\frac{69\!\cdots\!21}{35\!\cdots\!25}a^{16}+\frac{16\!\cdots\!87}{11\!\cdots\!75}a^{15}-\frac{12\!\cdots\!13}{71\!\cdots\!25}a^{14}+\frac{23\!\cdots\!27}{35\!\cdots\!25}a^{13}-\frac{31\!\cdots\!27}{11\!\cdots\!75}a^{12}-\frac{55\!\cdots\!62}{11\!\cdots\!75}a^{11}+\frac{78\!\cdots\!62}{71\!\cdots\!25}a^{10}-\frac{83\!\cdots\!14}{71\!\cdots\!25}a^{9}+\frac{10\!\cdots\!14}{35\!\cdots\!25}a^{8}-\frac{40\!\cdots\!43}{35\!\cdots\!25}a^{7}-\frac{67\!\cdots\!89}{71\!\cdots\!25}a^{6}+\frac{12\!\cdots\!98}{71\!\cdots\!25}a^{5}-\frac{25\!\cdots\!67}{14\!\cdots\!25}a^{4}+\frac{27\!\cdots\!61}{47\!\cdots\!75}a^{3}-\frac{17\!\cdots\!84}{57\!\cdots\!93}a^{2}+\frac{42\!\cdots\!89}{57\!\cdots\!93}a-\frac{15\!\cdots\!39}{57\!\cdots\!93}$, $\frac{75\!\cdots\!93}{71\!\cdots\!25}a^{35}-\frac{67\!\cdots\!03}{23\!\cdots\!75}a^{34}-\frac{40\!\cdots\!64}{71\!\cdots\!25}a^{33}+\frac{60\!\cdots\!89}{28\!\cdots\!65}a^{32}+\frac{29\!\cdots\!91}{71\!\cdots\!25}a^{31}-\frac{14\!\cdots\!17}{71\!\cdots\!25}a^{30}-\frac{17\!\cdots\!79}{79\!\cdots\!25}a^{29}+\frac{33\!\cdots\!04}{23\!\cdots\!75}a^{28}+\frac{46\!\cdots\!18}{23\!\cdots\!75}a^{27}-\frac{15\!\cdots\!28}{14\!\cdots\!25}a^{26}+\frac{11\!\cdots\!14}{71\!\cdots\!25}a^{25}-\frac{29\!\cdots\!82}{71\!\cdots\!25}a^{24}-\frac{30\!\cdots\!46}{79\!\cdots\!25}a^{23}+\frac{49\!\cdots\!07}{71\!\cdots\!25}a^{22}+\frac{74\!\cdots\!04}{71\!\cdots\!25}a^{21}-\frac{15\!\cdots\!97}{71\!\cdots\!25}a^{20}+\frac{12\!\cdots\!61}{71\!\cdots\!25}a^{19}+\frac{42\!\cdots\!69}{23\!\cdots\!75}a^{18}-\frac{58\!\cdots\!57}{23\!\cdots\!75}a^{17}-\frac{64\!\cdots\!22}{71\!\cdots\!25}a^{16}+\frac{45\!\cdots\!18}{71\!\cdots\!25}a^{15}-\frac{74\!\cdots\!09}{71\!\cdots\!25}a^{14}+\frac{29\!\cdots\!18}{71\!\cdots\!25}a^{13}-\frac{18\!\cdots\!08}{79\!\cdots\!25}a^{12}-\frac{80\!\cdots\!01}{14\!\cdots\!25}a^{11}+\frac{11\!\cdots\!08}{23\!\cdots\!75}a^{10}-\frac{11\!\cdots\!52}{14\!\cdots\!25}a^{9}+\frac{19\!\cdots\!24}{79\!\cdots\!25}a^{8}-\frac{63\!\cdots\!68}{71\!\cdots\!25}a^{7}+\frac{74\!\cdots\!72}{71\!\cdots\!25}a^{6}+\frac{13\!\cdots\!32}{15\!\cdots\!25}a^{5}-\frac{22\!\cdots\!78}{14\!\cdots\!25}a^{4}+\frac{13\!\cdots\!19}{28\!\cdots\!65}a^{3}-\frac{11\!\cdots\!04}{95\!\cdots\!55}a^{2}+\frac{26\!\cdots\!43}{57\!\cdots\!93}a-\frac{11\!\cdots\!55}{57\!\cdots\!93}$, $\frac{72\!\cdots\!67}{35\!\cdots\!25}a^{35}-\frac{12\!\cdots\!64}{35\!\cdots\!25}a^{34}-\frac{84\!\cdots\!01}{71\!\cdots\!25}a^{33}+\frac{67\!\cdots\!06}{23\!\cdots\!75}a^{32}+\frac{20\!\cdots\!29}{23\!\cdots\!75}a^{31}-\frac{10\!\cdots\!34}{35\!\cdots\!25}a^{30}-\frac{20\!\cdots\!08}{35\!\cdots\!25}a^{29}+\frac{53\!\cdots\!71}{27\!\cdots\!25}a^{28}+\frac{16\!\cdots\!36}{35\!\cdots\!25}a^{27}-\frac{53\!\cdots\!99}{35\!\cdots\!25}a^{26}+\frac{88\!\cdots\!92}{35\!\cdots\!25}a^{25}+\frac{15\!\cdots\!94}{35\!\cdots\!25}a^{24}-\frac{63\!\cdots\!19}{11\!\cdots\!75}a^{23}-\frac{14\!\cdots\!69}{35\!\cdots\!25}a^{22}+\frac{55\!\cdots\!17}{35\!\cdots\!25}a^{21}-\frac{39\!\cdots\!27}{11\!\cdots\!75}a^{20}+\frac{65\!\cdots\!68}{35\!\cdots\!25}a^{19}+\frac{34\!\cdots\!52}{11\!\cdots\!75}a^{18}-\frac{12\!\cdots\!58}{35\!\cdots\!25}a^{17}-\frac{40\!\cdots\!06}{35\!\cdots\!25}a^{16}+\frac{40\!\cdots\!51}{35\!\cdots\!25}a^{15}-\frac{98\!\cdots\!01}{71\!\cdots\!25}a^{14}+\frac{22\!\cdots\!97}{35\!\cdots\!25}a^{13}-\frac{85\!\cdots\!32}{11\!\cdots\!75}a^{12}-\frac{13\!\cdots\!61}{35\!\cdots\!25}a^{11}+\frac{61\!\cdots\!03}{71\!\cdots\!25}a^{10}-\frac{24\!\cdots\!24}{28\!\cdots\!65}a^{9}+\frac{99\!\cdots\!19}{35\!\cdots\!25}a^{8}-\frac{66\!\cdots\!77}{39\!\cdots\!25}a^{7}-\frac{18\!\cdots\!78}{23\!\cdots\!75}a^{6}+\frac{38\!\cdots\!64}{28\!\cdots\!65}a^{5}-\frac{35\!\cdots\!74}{28\!\cdots\!65}a^{4}+\frac{72\!\cdots\!36}{14\!\cdots\!25}a^{3}-\frac{53\!\cdots\!02}{28\!\cdots\!65}a^{2}+\frac{20\!\cdots\!23}{28\!\cdots\!65}a-\frac{10\!\cdots\!05}{57\!\cdots\!93}$, $\frac{83\!\cdots\!78}{35\!\cdots\!25}a^{35}-\frac{13\!\cdots\!01}{35\!\cdots\!25}a^{34}-\frac{86\!\cdots\!87}{71\!\cdots\!25}a^{33}+\frac{20\!\cdots\!23}{71\!\cdots\!25}a^{32}+\frac{11\!\cdots\!62}{11\!\cdots\!75}a^{31}-\frac{35\!\cdots\!77}{11\!\cdots\!75}a^{30}-\frac{23\!\cdots\!03}{39\!\cdots\!25}a^{29}+\frac{14\!\cdots\!41}{71\!\cdots\!25}a^{28}+\frac{17\!\cdots\!09}{35\!\cdots\!25}a^{27}-\frac{54\!\cdots\!41}{35\!\cdots\!25}a^{26}+\frac{10\!\cdots\!08}{35\!\cdots\!25}a^{25}-\frac{11\!\cdots\!24}{35\!\cdots\!25}a^{24}-\frac{14\!\cdots\!28}{35\!\cdots\!25}a^{23}-\frac{16\!\cdots\!76}{35\!\cdots\!25}a^{22}+\frac{49\!\cdots\!68}{35\!\cdots\!25}a^{21}-\frac{43\!\cdots\!58}{11\!\cdots\!75}a^{20}+\frac{10\!\cdots\!97}{35\!\cdots\!25}a^{19}+\frac{28\!\cdots\!24}{35\!\cdots\!25}a^{18}-\frac{83\!\cdots\!07}{35\!\cdots\!25}a^{17}+\frac{81\!\cdots\!76}{23\!\cdots\!75}a^{16}+\frac{36\!\cdots\!69}{35\!\cdots\!25}a^{15}-\frac{21\!\cdots\!73}{14\!\cdots\!25}a^{14}+\frac{53\!\cdots\!78}{35\!\cdots\!25}a^{13}-\frac{12\!\cdots\!63}{11\!\cdots\!75}a^{12}+\frac{68\!\cdots\!86}{35\!\cdots\!25}a^{11}+\frac{68\!\cdots\!71}{71\!\cdots\!25}a^{10}-\frac{83\!\cdots\!31}{71\!\cdots\!25}a^{9}+\frac{11\!\cdots\!07}{11\!\cdots\!75}a^{8}-\frac{20\!\cdots\!62}{35\!\cdots\!25}a^{7}+\frac{12\!\cdots\!23}{71\!\cdots\!25}a^{6}+\frac{44\!\cdots\!54}{23\!\cdots\!75}a^{5}-\frac{30\!\cdots\!91}{14\!\cdots\!25}a^{4}+\frac{22\!\cdots\!57}{14\!\cdots\!25}a^{3}-\frac{28\!\cdots\!52}{28\!\cdots\!65}a^{2}+\frac{25\!\cdots\!75}{57\!\cdots\!93}a-\frac{32\!\cdots\!84}{57\!\cdots\!93}$, $\frac{57\!\cdots\!39}{71\!\cdots\!25}a^{35}-\frac{40\!\cdots\!57}{79\!\cdots\!25}a^{34}-\frac{19\!\cdots\!18}{14\!\cdots\!25}a^{33}+\frac{50\!\cdots\!17}{14\!\cdots\!25}a^{32}+\frac{24\!\cdots\!08}{71\!\cdots\!25}a^{31}-\frac{21\!\cdots\!13}{71\!\cdots\!25}a^{30}+\frac{32\!\cdots\!38}{23\!\cdots\!75}a^{29}+\frac{11\!\cdots\!81}{57\!\cdots\!93}a^{28}-\frac{47\!\cdots\!48}{71\!\cdots\!25}a^{27}-\frac{11\!\cdots\!93}{71\!\cdots\!25}a^{26}+\frac{20\!\cdots\!84}{71\!\cdots\!25}a^{25}-\frac{19\!\cdots\!47}{71\!\cdots\!25}a^{24}-\frac{43\!\cdots\!51}{79\!\cdots\!25}a^{23}+\frac{52\!\cdots\!33}{79\!\cdots\!25}a^{22}+\frac{29\!\cdots\!18}{23\!\cdots\!75}a^{21}-\frac{25\!\cdots\!72}{71\!\cdots\!25}a^{20}+\frac{34\!\cdots\!16}{71\!\cdots\!25}a^{19}+\frac{31\!\cdots\!24}{23\!\cdots\!75}a^{18}-\frac{45\!\cdots\!21}{71\!\cdots\!25}a^{17}+\frac{11\!\cdots\!28}{71\!\cdots\!25}a^{16}+\frac{67\!\cdots\!28}{79\!\cdots\!25}a^{15}-\frac{32\!\cdots\!78}{14\!\cdots\!25}a^{14}+\frac{30\!\cdots\!23}{23\!\cdots\!75}a^{13}-\frac{75\!\cdots\!69}{23\!\cdots\!75}a^{12}-\frac{25\!\cdots\!17}{71\!\cdots\!25}a^{11}+\frac{35\!\cdots\!94}{47\!\cdots\!75}a^{10}-\frac{21\!\cdots\!42}{14\!\cdots\!25}a^{9}+\frac{47\!\cdots\!53}{71\!\cdots\!25}a^{8}-\frac{65\!\cdots\!11}{71\!\cdots\!25}a^{7}-\frac{14\!\cdots\!77}{14\!\cdots\!25}a^{6}+\frac{16\!\cdots\!49}{14\!\cdots\!25}a^{5}-\frac{43\!\cdots\!84}{19\!\cdots\!31}a^{4}+\frac{27\!\cdots\!28}{28\!\cdots\!65}a^{3}-\frac{21\!\cdots\!05}{63\!\cdots\!77}a^{2}+\frac{91\!\cdots\!57}{57\!\cdots\!93}a-\frac{99\!\cdots\!62}{19\!\cdots\!31}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 37522545233073.8 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 37522545233073.8 \cdot 4}{10\cdot\sqrt{55976669160095710730979516406061310775578022003173828125}}\cr\approx \mathstrut & 0.467289890310923 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - 2*x^35 - 5*x^34 + 15*x^33 + 37*x^32 - 147*x^31 - 224*x^30 + 1010*x^29 + 1898*x^28 - 7677*x^27 + 15016*x^26 - 2633*x^25 - 23501*x^24 + 7233*x^23 + 70181*x^22 - 185883*x^21 + 150724*x^20 + 74333*x^19 - 196394*x^18 + 25492*x^17 + 539723*x^16 - 835590*x^15 + 653911*x^14 - 237923*x^13 - 88438*x^12 + 471980*x^11 - 579070*x^10 + 377032*x^9 - 114549*x^8 - 5465*x^7 + 78115*x^6 - 92900*x^5 + 61725*x^4 - 24875*x^3 + 9625*x^2 - 3125*x + 625)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - 2*x^35 - 5*x^34 + 15*x^33 + 37*x^32 - 147*x^31 - 224*x^30 + 1010*x^29 + 1898*x^28 - 7677*x^27 + 15016*x^26 - 2633*x^25 - 23501*x^24 + 7233*x^23 + 70181*x^22 - 185883*x^21 + 150724*x^20 + 74333*x^19 - 196394*x^18 + 25492*x^17 + 539723*x^16 - 835590*x^15 + 653911*x^14 - 237923*x^13 - 88438*x^12 + 471980*x^11 - 579070*x^10 + 377032*x^9 - 114549*x^8 - 5465*x^7 + 78115*x^6 - 92900*x^5 + 61725*x^4 - 24875*x^3 + 9625*x^2 - 3125*x + 625, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - 2*x^35 - 5*x^34 + 15*x^33 + 37*x^32 - 147*x^31 - 224*x^30 + 1010*x^29 + 1898*x^28 - 7677*x^27 + 15016*x^26 - 2633*x^25 - 23501*x^24 + 7233*x^23 + 70181*x^22 - 185883*x^21 + 150724*x^20 + 74333*x^19 - 196394*x^18 + 25492*x^17 + 539723*x^16 - 835590*x^15 + 653911*x^14 - 237923*x^13 - 88438*x^12 + 471980*x^11 - 579070*x^10 + 377032*x^9 - 114549*x^8 - 5465*x^7 + 78115*x^6 - 92900*x^5 + 61725*x^4 - 24875*x^3 + 9625*x^2 - 3125*x + 625);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 2*x^35 - 5*x^34 + 15*x^33 + 37*x^32 - 147*x^31 - 224*x^30 + 1010*x^29 + 1898*x^28 - 7677*x^27 + 15016*x^26 - 2633*x^25 - 23501*x^24 + 7233*x^23 + 70181*x^22 - 185883*x^21 + 150724*x^20 + 74333*x^19 - 196394*x^18 + 25492*x^17 + 539723*x^16 - 835590*x^15 + 653911*x^14 - 237923*x^13 - 88438*x^12 + 471980*x^11 - 579070*x^10 + 377032*x^9 - 114549*x^8 - 5465*x^7 + 78115*x^6 - 92900*x^5 + 61725*x^4 - 24875*x^3 + 9625*x^2 - 3125*x + 625);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\times C_{12}$ (as 36T27):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 72
The 36 conjugacy class representatives for $S_3\times C_{12}$
Character table for $S_3\times C_{12}$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.3.169.1, 3.1.5915.1, \(\Q(\zeta_{5})\), 6.6.3570125.1, 6.2.174936125.1, 9.3.206949435875.1, 12.0.1593224064453125.1, 12.0.3825330978751953125.1, 18.6.5353508626122592126953125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 24 sibling: data not computed
Degree 36 sibling: deg 36
Minimal sibling: 24.0.43070843460234840091705322265625.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.12.0.1}{12} }^{3}$ ${\href{/padicField/3.12.0.1}{12} }^{3}$ R R ${\href{/padicField/11.3.0.1}{3} }^{12}$ R ${\href{/padicField/17.12.0.1}{12} }^{3}$ ${\href{/padicField/19.6.0.1}{6} }^{6}$ ${\href{/padicField/23.12.0.1}{12} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{6}$ ${\href{/padicField/31.2.0.1}{2} }^{12}{,}\,{\href{/padicField/31.1.0.1}{1} }^{12}$ ${\href{/padicField/37.12.0.1}{12} }^{3}$ ${\href{/padicField/41.6.0.1}{6} }^{4}{,}\,{\href{/padicField/41.3.0.1}{3} }^{4}$ ${\href{/padicField/43.12.0.1}{12} }^{3}$ ${\href{/padicField/47.12.0.1}{12} }^{3}$ ${\href{/padicField/53.4.0.1}{4} }^{9}$ ${\href{/padicField/59.6.0.1}{6} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.6.1$x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
\(7\) Copy content Toggle raw display 7.12.0.1$x^{12} + 2 x^{8} + 5 x^{7} + 3 x^{6} + 2 x^{5} + 4 x^{4} + 5 x^{2} + 3$$1$$12$$0$$C_{12}$$[\ ]^{12}$
Deg $24$$2$$12$$12$
\(13\) Copy content Toggle raw display Deg $36$$3$$12$$24$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.7.2t1.a.a$1$ $ 7 $ \(\Q(\sqrt{-7}) \) $C_2$ (as 2T1) $1$ $-1$
1.35.2t1.a.a$1$ $ 5 \cdot 7 $ \(\Q(\sqrt{-35}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
* 1.13.3t1.a.a$1$ $ 13 $ 3.3.169.1 $C_3$ (as 3T1) $0$ $1$
1.91.6t1.g.a$1$ $ 7 \cdot 13 $ 6.0.9796423.1 $C_6$ (as 6T1) $0$ $-1$
* 1.13.3t1.a.b$1$ $ 13 $ 3.3.169.1 $C_3$ (as 3T1) $0$ $1$
1.91.6t1.g.b$1$ $ 7 \cdot 13 $ 6.0.9796423.1 $C_6$ (as 6T1) $0$ $-1$
* 1.65.6t1.b.a$1$ $ 5 \cdot 13 $ 6.6.3570125.1 $C_6$ (as 6T1) $0$ $1$
* 1.65.6t1.b.b$1$ $ 5 \cdot 13 $ 6.6.3570125.1 $C_6$ (as 6T1) $0$ $1$
1.455.6t1.b.a$1$ $ 5 \cdot 7 \cdot 13 $ 6.0.1224552875.2 $C_6$ (as 6T1) $0$ $-1$
1.455.6t1.b.b$1$ $ 5 \cdot 7 \cdot 13 $ 6.0.1224552875.2 $C_6$ (as 6T1) $0$ $-1$
* 1.5.4t1.a.a$1$ $ 5 $ \(\Q(\zeta_{5})\) $C_4$ (as 4T1) $0$ $-1$
1.35.4t1.a.a$1$ $ 5 \cdot 7 $ 4.4.6125.1 $C_4$ (as 4T1) $0$ $1$
1.35.4t1.a.b$1$ $ 5 \cdot 7 $ 4.4.6125.1 $C_4$ (as 4T1) $0$ $1$
* 1.5.4t1.a.b$1$ $ 5 $ \(\Q(\zeta_{5})\) $C_4$ (as 4T1) $0$ $-1$
1.455.12t1.a.a$1$ $ 5 \cdot 7 \cdot 13 $ 12.12.187441217958845703125.1 $C_{12}$ (as 12T1) $0$ $1$
* 1.65.12t1.a.a$1$ $ 5 \cdot 13 $ 12.0.1593224064453125.1 $C_{12}$ (as 12T1) $0$ $-1$
* 1.65.12t1.a.b$1$ $ 5 \cdot 13 $ 12.0.1593224064453125.1 $C_{12}$ (as 12T1) $0$ $-1$
1.455.12t1.a.b$1$ $ 5 \cdot 7 \cdot 13 $ 12.12.187441217958845703125.1 $C_{12}$ (as 12T1) $0$ $1$
* 1.65.12t1.a.c$1$ $ 5 \cdot 13 $ 12.0.1593224064453125.1 $C_{12}$ (as 12T1) $0$ $-1$
1.455.12t1.a.c$1$ $ 5 \cdot 7 \cdot 13 $ 12.12.187441217958845703125.1 $C_{12}$ (as 12T1) $0$ $1$
1.455.12t1.a.d$1$ $ 5 \cdot 7 \cdot 13 $ 12.12.187441217958845703125.1 $C_{12}$ (as 12T1) $0$ $1$
* 1.65.12t1.a.d$1$ $ 5 \cdot 13 $ 12.0.1593224064453125.1 $C_{12}$ (as 12T1) $0$ $-1$
* 2.5915.3t2.a.a$2$ $ 5 \cdot 7 \cdot 13^{2}$ 3.1.5915.1 $S_3$ (as 3T2) $1$ $0$
* 2.5915.6t3.d.a$2$ $ 5 \cdot 7 \cdot 13^{2}$ 6.0.244910575.1 $D_{6}$ (as 6T3) $1$ $0$
* 2.455.12t18.a.a$2$ $ 5 \cdot 7 \cdot 13 $ 12.0.52502704515625.1 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.455.12t18.a.b$2$ $ 5 \cdot 7 \cdot 13 $ 12.0.52502704515625.1 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.455.6t5.a.a$2$ $ 5 \cdot 7 \cdot 13 $ 6.0.7245875.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.455.6t5.a.b$2$ $ 5 \cdot 7 \cdot 13 $ 6.0.7245875.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.29575.12t11.b.a$2$ $ 5^{2} \cdot 7 \cdot 13^{2}$ 12.4.187441217958845703125.1 $S_3 \times C_4$ (as 12T11) $0$ $0$
* 2.29575.12t11.b.b$2$ $ 5^{2} \cdot 7 \cdot 13^{2}$ 12.4.187441217958845703125.1 $S_3 \times C_4$ (as 12T11) $0$ $0$
* 2.2275.24t65.b.a$2$ $ 5^{2} \cdot 7 \cdot 13 $ 36.0.55976669160095710730979516406061310775578022003173828125.1 $S_3\times C_{12}$ (as 36T27) $0$ $0$
* 2.2275.24t65.b.b$2$ $ 5^{2} \cdot 7 \cdot 13 $ 36.0.55976669160095710730979516406061310775578022003173828125.1 $S_3\times C_{12}$ (as 36T27) $0$ $0$
* 2.2275.24t65.b.c$2$ $ 5^{2} \cdot 7 \cdot 13 $ 36.0.55976669160095710730979516406061310775578022003173828125.1 $S_3\times C_{12}$ (as 36T27) $0$ $0$
* 2.2275.24t65.b.d$2$ $ 5^{2} \cdot 7 \cdot 13 $ 36.0.55976669160095710730979516406061310775578022003173828125.1 $S_3\times C_{12}$ (as 36T27) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.