Properties

Label 36.0.997...000.1
Degree $36$
Signature $[0, 18]$
Discriminant $9.971\times 10^{48}$
Root discriminant \(22.97\)
Ramified primes $2,3,5$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_3\times C_{12}$ (as 36T27)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 3*x^35 + 6*x^34 - 11*x^33 + 21*x^32 - 39*x^31 + 113*x^30 - 237*x^29 + 381*x^28 - 379*x^27 + 102*x^26 + 873*x^25 - 2357*x^24 + 5118*x^23 - 8217*x^22 + 11388*x^21 - 11523*x^20 + 7506*x^19 + 5558*x^18 - 23193*x^17 + 47733*x^16 - 72176*x^15 + 93003*x^14 - 106809*x^13 + 114281*x^12 - 118527*x^11 + 110259*x^10 - 81844*x^9 + 43665*x^8 - 14157*x^7 + 1524*x^6 + 732*x^5 - 297*x^4 + 7*x^3 + 27*x^2 - 9*x + 1)
 
gp: K = bnfinit(y^36 - 3*y^35 + 6*y^34 - 11*y^33 + 21*y^32 - 39*y^31 + 113*y^30 - 237*y^29 + 381*y^28 - 379*y^27 + 102*y^26 + 873*y^25 - 2357*y^24 + 5118*y^23 - 8217*y^22 + 11388*y^21 - 11523*y^20 + 7506*y^19 + 5558*y^18 - 23193*y^17 + 47733*y^16 - 72176*y^15 + 93003*y^14 - 106809*y^13 + 114281*y^12 - 118527*y^11 + 110259*y^10 - 81844*y^9 + 43665*y^8 - 14157*y^7 + 1524*y^6 + 732*y^5 - 297*y^4 + 7*y^3 + 27*y^2 - 9*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - 3*x^35 + 6*x^34 - 11*x^33 + 21*x^32 - 39*x^31 + 113*x^30 - 237*x^29 + 381*x^28 - 379*x^27 + 102*x^26 + 873*x^25 - 2357*x^24 + 5118*x^23 - 8217*x^22 + 11388*x^21 - 11523*x^20 + 7506*x^19 + 5558*x^18 - 23193*x^17 + 47733*x^16 - 72176*x^15 + 93003*x^14 - 106809*x^13 + 114281*x^12 - 118527*x^11 + 110259*x^10 - 81844*x^9 + 43665*x^8 - 14157*x^7 + 1524*x^6 + 732*x^5 - 297*x^4 + 7*x^3 + 27*x^2 - 9*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 3*x^35 + 6*x^34 - 11*x^33 + 21*x^32 - 39*x^31 + 113*x^30 - 237*x^29 + 381*x^28 - 379*x^27 + 102*x^26 + 873*x^25 - 2357*x^24 + 5118*x^23 - 8217*x^22 + 11388*x^21 - 11523*x^20 + 7506*x^19 + 5558*x^18 - 23193*x^17 + 47733*x^16 - 72176*x^15 + 93003*x^14 - 106809*x^13 + 114281*x^12 - 118527*x^11 + 110259*x^10 - 81844*x^9 + 43665*x^8 - 14157*x^7 + 1524*x^6 + 732*x^5 - 297*x^4 + 7*x^3 + 27*x^2 - 9*x + 1)
 

\( x^{36} - 3 x^{35} + 6 x^{34} - 11 x^{33} + 21 x^{32} - 39 x^{31} + 113 x^{30} - 237 x^{29} + 381 x^{28} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(9970805384609063732920125000000000000000000000000\) \(\medspace = 2^{24}\cdot 3^{48}\cdot 5^{27}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(22.97\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{4/3}5^{3/4}\approx 28.934712524984697$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $12$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{5}a^{24}-\frac{1}{5}a^{23}+\frac{2}{5}a^{22}+\frac{2}{5}a^{21}+\frac{1}{5}a^{19}+\frac{2}{5}a^{18}-\frac{1}{5}a^{17}+\frac{1}{5}a^{16}-\frac{2}{5}a^{14}-\frac{1}{5}a^{13}-\frac{2}{5}a^{12}-\frac{2}{5}a^{11}+\frac{1}{5}a^{10}+\frac{1}{5}a^{9}-\frac{1}{5}a^{7}-\frac{2}{5}a^{6}+\frac{2}{5}a^{5}-\frac{2}{5}a^{3}-\frac{1}{5}a^{2}+\frac{2}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{25}+\frac{1}{5}a^{23}-\frac{1}{5}a^{22}+\frac{2}{5}a^{21}+\frac{1}{5}a^{20}-\frac{2}{5}a^{19}+\frac{1}{5}a^{18}+\frac{1}{5}a^{16}-\frac{2}{5}a^{15}+\frac{2}{5}a^{14}+\frac{2}{5}a^{13}+\frac{1}{5}a^{12}-\frac{1}{5}a^{11}+\frac{2}{5}a^{10}+\frac{1}{5}a^{9}-\frac{1}{5}a^{8}+\frac{2}{5}a^{7}+\frac{2}{5}a^{5}-\frac{2}{5}a^{4}+\frac{2}{5}a^{3}+\frac{1}{5}a^{2}-\frac{2}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{26}-\frac{1}{5}a^{21}-\frac{2}{5}a^{20}-\frac{2}{5}a^{18}+\frac{2}{5}a^{17}+\frac{2}{5}a^{16}+\frac{2}{5}a^{15}-\frac{1}{5}a^{14}+\frac{2}{5}a^{13}+\frac{1}{5}a^{12}-\frac{1}{5}a^{11}-\frac{2}{5}a^{9}+\frac{2}{5}a^{8}+\frac{1}{5}a^{7}-\frac{1}{5}a^{6}+\frac{1}{5}a^{5}+\frac{2}{5}a^{4}-\frac{2}{5}a^{3}-\frac{1}{5}a^{2}-\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{5}a^{27}-\frac{1}{5}a^{22}-\frac{2}{5}a^{21}-\frac{2}{5}a^{19}+\frac{2}{5}a^{18}+\frac{2}{5}a^{17}+\frac{2}{5}a^{16}-\frac{1}{5}a^{15}+\frac{2}{5}a^{14}+\frac{1}{5}a^{13}-\frac{1}{5}a^{12}-\frac{2}{5}a^{10}+\frac{2}{5}a^{9}+\frac{1}{5}a^{8}-\frac{1}{5}a^{7}+\frac{1}{5}a^{6}+\frac{2}{5}a^{5}-\frac{2}{5}a^{4}-\frac{1}{5}a^{3}-\frac{1}{5}a^{2}-\frac{1}{5}a$, $\frac{1}{5}a^{28}-\frac{1}{5}a^{23}-\frac{2}{5}a^{22}-\frac{2}{5}a^{20}+\frac{2}{5}a^{19}+\frac{2}{5}a^{18}+\frac{2}{5}a^{17}-\frac{1}{5}a^{16}+\frac{2}{5}a^{15}+\frac{1}{5}a^{14}-\frac{1}{5}a^{13}-\frac{2}{5}a^{11}+\frac{2}{5}a^{10}+\frac{1}{5}a^{9}-\frac{1}{5}a^{8}+\frac{1}{5}a^{7}+\frac{2}{5}a^{6}-\frac{2}{5}a^{5}-\frac{1}{5}a^{4}-\frac{1}{5}a^{3}-\frac{1}{5}a^{2}$, $\frac{1}{5}a^{29}+\frac{2}{5}a^{23}+\frac{2}{5}a^{22}+\frac{2}{5}a^{20}-\frac{2}{5}a^{19}-\frac{1}{5}a^{18}-\frac{2}{5}a^{17}-\frac{2}{5}a^{16}+\frac{1}{5}a^{15}+\frac{2}{5}a^{14}-\frac{1}{5}a^{13}+\frac{1}{5}a^{12}+\frac{2}{5}a^{10}+\frac{1}{5}a^{8}+\frac{1}{5}a^{7}+\frac{1}{5}a^{6}+\frac{1}{5}a^{5}-\frac{1}{5}a^{4}+\frac{2}{5}a^{3}-\frac{1}{5}a^{2}+\frac{2}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{30}-\frac{1}{5}a^{23}+\frac{1}{5}a^{22}-\frac{2}{5}a^{21}-\frac{2}{5}a^{20}+\frac{2}{5}a^{19}-\frac{1}{5}a^{18}-\frac{1}{5}a^{16}+\frac{2}{5}a^{15}-\frac{2}{5}a^{14}-\frac{2}{5}a^{13}-\frac{1}{5}a^{12}+\frac{1}{5}a^{11}-\frac{2}{5}a^{10}-\frac{1}{5}a^{9}+\frac{1}{5}a^{8}-\frac{2}{5}a^{7}+\frac{2}{5}a^{4}-\frac{2}{5}a^{3}-\frac{1}{5}a^{2}+\frac{2}{5}a-\frac{2}{5}$, $\frac{1}{95}a^{31}-\frac{3}{95}a^{30}-\frac{6}{95}a^{29}-\frac{2}{95}a^{28}+\frac{2}{95}a^{27}+\frac{3}{95}a^{26}+\frac{1}{95}a^{25}+\frac{6}{95}a^{24}-\frac{47}{95}a^{23}+\frac{23}{95}a^{22}+\frac{43}{95}a^{21}-\frac{7}{19}a^{20}+\frac{22}{95}a^{19}-\frac{42}{95}a^{18}-\frac{7}{19}a^{17}-\frac{23}{95}a^{16}-\frac{1}{95}a^{15}+\frac{44}{95}a^{14}+\frac{31}{95}a^{13}-\frac{39}{95}a^{12}+\frac{41}{95}a^{11}+\frac{24}{95}a^{10}-\frac{12}{95}a^{9}+\frac{43}{95}a^{8}-\frac{41}{95}a^{7}-\frac{7}{19}a^{6}-\frac{22}{95}a^{5}+\frac{9}{19}a^{4}+\frac{1}{19}a^{3}-\frac{23}{95}a^{2}-\frac{18}{95}a+\frac{3}{19}$, $\frac{1}{95}a^{32}+\frac{4}{95}a^{30}-\frac{1}{95}a^{29}-\frac{4}{95}a^{28}+\frac{9}{95}a^{27}-\frac{9}{95}a^{26}+\frac{9}{95}a^{25}+\frac{9}{95}a^{24}-\frac{42}{95}a^{23}-\frac{8}{19}a^{22}-\frac{39}{95}a^{21}-\frac{9}{19}a^{20}-\frac{33}{95}a^{19}+\frac{2}{19}a^{18}+\frac{43}{95}a^{17}-\frac{32}{95}a^{16}-\frac{7}{19}a^{15}+\frac{11}{95}a^{14}+\frac{16}{95}a^{13}+\frac{1}{5}a^{12}+\frac{14}{95}a^{11}+\frac{3}{95}a^{10}-\frac{31}{95}a^{9}-\frac{7}{95}a^{8}-\frac{44}{95}a^{7}+\frac{5}{19}a^{6}-\frac{8}{19}a^{5}+\frac{26}{95}a^{4}-\frac{46}{95}a^{3}+\frac{46}{95}a^{2}+\frac{37}{95}a-\frac{12}{95}$, $\frac{1}{475}a^{33}-\frac{1}{475}a^{31}+\frac{14}{475}a^{30}+\frac{9}{95}a^{29}+\frac{13}{475}a^{26}-\frac{3}{95}a^{25}-\frac{3}{95}a^{24}+\frac{81}{475}a^{23}-\frac{154}{475}a^{22}+\frac{44}{475}a^{21}-\frac{29}{475}a^{20}+\frac{166}{475}a^{19}-\frac{89}{475}a^{18}+\frac{86}{475}a^{17}-\frac{22}{95}a^{16}-\frac{41}{475}a^{15}+\frac{62}{475}a^{14}+\frac{16}{475}a^{13}+\frac{2}{5}a^{12}-\frac{88}{475}a^{11}+\frac{42}{95}a^{10}+\frac{72}{475}a^{9}+\frac{28}{95}a^{8}+\frac{27}{95}a^{7}+\frac{97}{475}a^{6}-\frac{54}{475}a^{5}-\frac{43}{475}a^{4}-\frac{131}{475}a^{3}+\frac{12}{25}a^{2}-\frac{6}{19}a+\frac{153}{475}$, $\frac{1}{85025}a^{34}-\frac{44}{85025}a^{33}+\frac{249}{85025}a^{32}-\frac{427}{85025}a^{31}-\frac{6001}{85025}a^{30}-\frac{643}{17005}a^{29}-\frac{44}{17005}a^{28}+\frac{3763}{85025}a^{27}-\frac{2012}{85025}a^{26}+\frac{102}{17005}a^{25}+\frac{4071}{85025}a^{24}+\frac{5347}{85025}a^{23}-\frac{4824}{17005}a^{22}-\frac{6628}{17005}a^{21}-\frac{5658}{85025}a^{20}-\frac{33723}{85025}a^{19}+\frac{37132}{85025}a^{18}+\frac{35801}{85025}a^{17}-\frac{40116}{85025}a^{16}-\frac{24829}{85025}a^{15}+\frac{3968}{85025}a^{14}-\frac{14779}{85025}a^{13}+\frac{7712}{85025}a^{12}+\frac{19807}{85025}a^{11}-\frac{28133}{85025}a^{10}+\frac{18507}{85025}a^{9}+\frac{3242}{17005}a^{8}+\frac{16722}{85025}a^{7}+\frac{25363}{85025}a^{6}-\frac{24262}{85025}a^{5}+\frac{39446}{85025}a^{4}+\frac{18952}{85025}a^{3}-\frac{11847}{85025}a^{2}-\frac{14597}{85025}a+\frac{2753}{85025}$, $\frac{1}{47\!\cdots\!75}a^{35}-\frac{10\!\cdots\!32}{94\!\cdots\!95}a^{34}+\frac{78\!\cdots\!23}{47\!\cdots\!75}a^{33}-\frac{86\!\cdots\!76}{47\!\cdots\!75}a^{32}-\frac{32\!\cdots\!24}{47\!\cdots\!75}a^{31}-\frac{33\!\cdots\!19}{47\!\cdots\!75}a^{30}-\frac{23\!\cdots\!04}{94\!\cdots\!95}a^{29}-\frac{36\!\cdots\!13}{24\!\cdots\!25}a^{28}-\frac{31\!\cdots\!39}{94\!\cdots\!95}a^{27}+\frac{12\!\cdots\!53}{24\!\cdots\!25}a^{26}-\frac{28\!\cdots\!44}{47\!\cdots\!75}a^{25}-\frac{45\!\cdots\!19}{47\!\cdots\!75}a^{24}-\frac{11\!\cdots\!52}{47\!\cdots\!75}a^{23}-\frac{47\!\cdots\!83}{18\!\cdots\!79}a^{22}-\frac{13\!\cdots\!33}{47\!\cdots\!75}a^{21}+\frac{30\!\cdots\!93}{94\!\cdots\!95}a^{20}-\frac{35\!\cdots\!42}{94\!\cdots\!95}a^{19}+\frac{54\!\cdots\!69}{47\!\cdots\!75}a^{18}+\frac{10\!\cdots\!03}{47\!\cdots\!75}a^{17}-\frac{10\!\cdots\!08}{47\!\cdots\!75}a^{16}-\frac{85\!\cdots\!08}{47\!\cdots\!75}a^{15}-\frac{15\!\cdots\!87}{47\!\cdots\!75}a^{14}+\frac{15\!\cdots\!11}{47\!\cdots\!75}a^{13}+\frac{95\!\cdots\!54}{94\!\cdots\!95}a^{12}+\frac{35\!\cdots\!78}{94\!\cdots\!95}a^{11}+\frac{32\!\cdots\!22}{10\!\cdots\!01}a^{10}-\frac{61\!\cdots\!07}{47\!\cdots\!75}a^{9}+\frac{18\!\cdots\!07}{47\!\cdots\!75}a^{8}-\frac{72\!\cdots\!79}{47\!\cdots\!75}a^{7}+\frac{10\!\cdots\!54}{94\!\cdots\!95}a^{6}+\frac{10\!\cdots\!68}{47\!\cdots\!75}a^{5}+\frac{16\!\cdots\!91}{47\!\cdots\!75}a^{4}-\frac{15\!\cdots\!49}{47\!\cdots\!75}a^{3}+\frac{42\!\cdots\!96}{94\!\cdots\!95}a^{2}-\frac{13\!\cdots\!27}{94\!\cdots\!95}a+\frac{70\!\cdots\!32}{47\!\cdots\!75}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{8741486027887747591580108943727200165994152473321078552148462}{5276303238044123414241821823157920931357255942644948999143005} a^{35} - \frac{24356001619947799117406687862552200617513907401684738798666641}{5276303238044123414241821823157920931357255942644948999143005} a^{34} + \frac{9406841920684527307974949845170457230374308268189296823630701}{1055260647608824682848364364631584186271451188528989799828601} a^{33} - \frac{85537105497711092598832987422419286663554732094650865666088914}{5276303238044123414241821823157920931357255942644948999143005} a^{32} + \frac{164215182565227427567825638959890604078485600304119448664313212}{5276303238044123414241821823157920931357255942644948999143005} a^{31} - \frac{303872719698107267043815066752060157524698836696434363197878563}{5276303238044123414241821823157920931357255942644948999143005} a^{30} + \frac{919091008799463659921524601268741810740354336493787886917931406}{5276303238044123414241821823157920931357255942644948999143005} a^{29} - \frac{1868357806656730607675602017154875933504973676684193459593788257}{5276303238044123414241821823157920931357255942644948999143005} a^{28} + \frac{2909829824664759264555039088577704140501587513570807876013844146}{5276303238044123414241821823157920931357255942644948999143005} a^{27} - \frac{2648235939605951518301277075379908364455002988794911248864645339}{5276303238044123414241821823157920931357255942644948999143005} a^{26} + \frac{259979774385523016878607004700915285893800032018428241238712111}{5276303238044123414241821823157920931357255942644948999143005} a^{25} + \frac{1548802899157252101206799050095843333566593936164159429074493786}{1055260647608824682848364364631584186271451188528989799828601} a^{24} - \frac{3789740545569051174203627684137113439914297476143439020449363132}{1055260647608824682848364364631584186271451188528989799828601} a^{23} + \frac{40502911134359055488208023846006232274358721103842793301828149977}{5276303238044123414241821823157920931357255942644948999143005} a^{22} - \frac{62734005691030385044125301558721144770845411429394118746427477747}{5276303238044123414241821823157920931357255942644948999143005} a^{21} + \frac{85211583341603545737135545675041571095267314382206541963476851808}{5276303238044123414241821823157920931357255942644948999143005} a^{20} - \frac{16219785936376492384834547147003994222626997282141240687689901678}{1055260647608824682848364364631584186271451188528989799828601} a^{19} + \frac{46377093550327530998381303587447558072554385234640467326804673932}{5276303238044123414241821823157920931357255942644948999143005} a^{18} + \frac{60256827637552098134824234426955957691166553371385736372109818051}{5276303238044123414241821823157920931357255942644948999143005} a^{17} - \frac{190792412494996351382008240359142901858552371514616686973482230767}{5276303238044123414241821823157920931357255942644948999143005} a^{16} + \frac{74987685142496585333375845382288569333332895737326812082121116435}{1055260647608824682848364364631584186271451188528989799828601} a^{15} - \frac{546341573748803993032805474696113882550407987874841924983717777334}{5276303238044123414241821823157920931357255942644948999143005} a^{14} + \frac{137532514380330712092287371459009795577488305549840985751418864954}{1055260647608824682848364364631584186271451188528989799828601} a^{13} - \frac{774415801461763895055306788062857926111373500304201238208258120059}{5276303238044123414241821823157920931357255942644948999143005} a^{12} + \frac{818195773297749854949119894946510364747560154221490007509451232789}{5276303238044123414241821823157920931357255942644948999143005} a^{11} - \frac{844163796945795306265441153635838526420339614566661402390638509076}{5276303238044123414241821823157920931357255942644948999143005} a^{10} + \frac{153095005285819814481669104936961226112045781805655206282336874337}{1055260647608824682848364364631584186271451188528989799828601} a^{9} - \frac{533354367570528018146441593284863333350178933609450900398646676201}{5276303238044123414241821823157920931357255942644948999143005} a^{8} + \frac{251149287268984823449554993420381826034038845773808611556358558488}{5276303238044123414241821823157920931357255942644948999143005} a^{7} - \frac{11785208011485811420771904033297889228560010330909636078510652325}{1055260647608824682848364364631584186271451188528989799828601} a^{6} - \frac{4164380147011208357190160625883332076451692962815235318255121093}{5276303238044123414241821823157920931357255942644948999143005} a^{5} + \frac{6444043090077031667408882762822995705741471724852670873345694563}{5276303238044123414241821823157920931357255942644948999143005} a^{4} - \frac{56699963342930760192398406695060690856092054148115739413426126}{277700170423374916539043253850416891124066102244470999954895} a^{3} - \frac{252698125018530569602681381557197435811356893154765849297725251}{5276303238044123414241821823157920931357255942644948999143005} a^{2} + \frac{36127564416032600936492821450179047558834707000382890136601618}{1055260647608824682848364364631584186271451188528989799828601} a - \frac{6406284171051532912682221447866353236187041919714897250805697}{1055260647608824682848364364631584186271451188528989799828601} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{15\!\cdots\!43}{52\!\cdots\!05}a^{35}-\frac{41\!\cdots\!36}{52\!\cdots\!05}a^{34}+\frac{15\!\cdots\!34}{10\!\cdots\!01}a^{33}-\frac{14\!\cdots\!23}{52\!\cdots\!05}a^{32}+\frac{27\!\cdots\!02}{52\!\cdots\!05}a^{31}-\frac{51\!\cdots\!91}{52\!\cdots\!05}a^{30}+\frac{15\!\cdots\!98}{52\!\cdots\!05}a^{29}-\frac{63\!\cdots\!07}{10\!\cdots\!01}a^{28}+\frac{98\!\cdots\!74}{10\!\cdots\!01}a^{27}-\frac{43\!\cdots\!33}{52\!\cdots\!05}a^{26}+\frac{28\!\cdots\!11}{52\!\cdots\!05}a^{25}+\frac{13\!\cdots\!97}{52\!\cdots\!05}a^{24}-\frac{64\!\cdots\!12}{10\!\cdots\!01}a^{23}+\frac{68\!\cdots\!42}{52\!\cdots\!05}a^{22}-\frac{21\!\cdots\!27}{10\!\cdots\!01}a^{21}+\frac{28\!\cdots\!31}{10\!\cdots\!01}a^{20}-\frac{13\!\cdots\!39}{52\!\cdots\!05}a^{19}+\frac{75\!\cdots\!47}{52\!\cdots\!05}a^{18}+\frac{10\!\cdots\!27}{52\!\cdots\!05}a^{17}-\frac{32\!\cdots\!18}{52\!\cdots\!05}a^{16}+\frac{12\!\cdots\!59}{10\!\cdots\!01}a^{15}-\frac{92\!\cdots\!07}{52\!\cdots\!05}a^{14}+\frac{11\!\cdots\!44}{52\!\cdots\!05}a^{13}-\frac{12\!\cdots\!63}{52\!\cdots\!05}a^{12}+\frac{27\!\cdots\!13}{10\!\cdots\!01}a^{11}-\frac{28\!\cdots\!75}{10\!\cdots\!01}a^{10}+\frac{12\!\cdots\!83}{52\!\cdots\!05}a^{9}-\frac{87\!\cdots\!86}{52\!\cdots\!05}a^{8}+\frac{81\!\cdots\!14}{10\!\cdots\!01}a^{7}-\frac{92\!\cdots\!11}{52\!\cdots\!05}a^{6}-\frac{75\!\cdots\!08}{52\!\cdots\!05}a^{5}+\frac{20\!\cdots\!23}{10\!\cdots\!01}a^{4}-\frac{16\!\cdots\!21}{52\!\cdots\!05}a^{3}-\frac{43\!\cdots\!47}{52\!\cdots\!05}a^{2}+\frac{28\!\cdots\!39}{52\!\cdots\!05}a-\frac{50\!\cdots\!13}{52\!\cdots\!05}$, $\frac{42\!\cdots\!52}{47\!\cdots\!75}a^{35}-\frac{23\!\cdots\!31}{94\!\cdots\!95}a^{34}+\frac{23\!\cdots\!68}{47\!\cdots\!75}a^{33}-\frac{42\!\cdots\!47}{47\!\cdots\!75}a^{32}+\frac{16\!\cdots\!94}{94\!\cdots\!95}a^{31}-\frac{59\!\cdots\!14}{18\!\cdots\!79}a^{30}+\frac{89\!\cdots\!82}{94\!\cdots\!95}a^{29}-\frac{91\!\cdots\!24}{47\!\cdots\!75}a^{28}+\frac{28\!\cdots\!46}{94\!\cdots\!95}a^{27}-\frac{14\!\cdots\!57}{49\!\cdots\!05}a^{26}+\frac{19\!\cdots\!52}{47\!\cdots\!75}a^{25}+\frac{37\!\cdots\!42}{47\!\cdots\!75}a^{24}-\frac{92\!\cdots\!62}{47\!\cdots\!75}a^{23}+\frac{19\!\cdots\!52}{47\!\cdots\!75}a^{22}-\frac{30\!\cdots\!58}{47\!\cdots\!75}a^{21}+\frac{42\!\cdots\!12}{47\!\cdots\!75}a^{20}-\frac{40\!\cdots\!28}{47\!\cdots\!75}a^{19}+\frac{48\!\cdots\!46}{94\!\cdots\!95}a^{18}+\frac{27\!\cdots\!93}{47\!\cdots\!75}a^{17}-\frac{92\!\cdots\!86}{47\!\cdots\!75}a^{16}+\frac{18\!\cdots\!87}{47\!\cdots\!75}a^{15}-\frac{53\!\cdots\!97}{94\!\cdots\!95}a^{14}+\frac{34\!\cdots\!69}{47\!\cdots\!75}a^{13}-\frac{77\!\cdots\!43}{94\!\cdots\!95}a^{12}+\frac{40\!\cdots\!19}{47\!\cdots\!75}a^{11}-\frac{16\!\cdots\!74}{18\!\cdots\!79}a^{10}+\frac{15\!\cdots\!89}{18\!\cdots\!79}a^{9}-\frac{27\!\cdots\!41}{47\!\cdots\!75}a^{8}+\frac{13\!\cdots\!97}{47\!\cdots\!75}a^{7}-\frac{18\!\cdots\!39}{24\!\cdots\!25}a^{6}-\frac{71\!\cdots\!57}{47\!\cdots\!75}a^{5}+\frac{33\!\cdots\!86}{47\!\cdots\!75}a^{4}-\frac{64\!\cdots\!48}{49\!\cdots\!05}a^{3}-\frac{11\!\cdots\!14}{47\!\cdots\!75}a^{2}+\frac{21\!\cdots\!23}{94\!\cdots\!95}a-\frac{42\!\cdots\!72}{94\!\cdots\!95}$, $\frac{20\!\cdots\!28}{47\!\cdots\!75}a^{35}-\frac{16\!\cdots\!04}{94\!\cdots\!95}a^{34}+\frac{16\!\cdots\!51}{47\!\cdots\!75}a^{33}-\frac{30\!\cdots\!68}{47\!\cdots\!75}a^{32}+\frac{57\!\cdots\!46}{47\!\cdots\!75}a^{31}-\frac{10\!\cdots\!54}{47\!\cdots\!75}a^{30}+\frac{11\!\cdots\!56}{18\!\cdots\!79}a^{29}-\frac{66\!\cdots\!81}{47\!\cdots\!75}a^{28}+\frac{21\!\cdots\!89}{94\!\cdots\!95}a^{27}-\frac{12\!\cdots\!68}{47\!\cdots\!75}a^{26}+\frac{28\!\cdots\!57}{24\!\cdots\!25}a^{25}+\frac{18\!\cdots\!08}{47\!\cdots\!75}a^{24}-\frac{64\!\cdots\!94}{47\!\cdots\!75}a^{23}+\frac{13\!\cdots\!37}{47\!\cdots\!75}a^{22}-\frac{24\!\cdots\!11}{47\!\cdots\!75}a^{21}+\frac{33\!\cdots\!62}{47\!\cdots\!75}a^{20}-\frac{37\!\cdots\!33}{47\!\cdots\!75}a^{19}+\frac{26\!\cdots\!44}{47\!\cdots\!75}a^{18}+\frac{65\!\cdots\!11}{47\!\cdots\!75}a^{17}-\frac{33\!\cdots\!46}{24\!\cdots\!25}a^{16}+\frac{13\!\cdots\!09}{47\!\cdots\!75}a^{15}-\frac{21\!\cdots\!57}{47\!\cdots\!75}a^{14}+\frac{55\!\cdots\!57}{94\!\cdots\!95}a^{13}-\frac{65\!\cdots\!24}{94\!\cdots\!95}a^{12}+\frac{35\!\cdots\!39}{47\!\cdots\!75}a^{11}-\frac{72\!\cdots\!54}{94\!\cdots\!95}a^{10}+\frac{34\!\cdots\!83}{47\!\cdots\!75}a^{9}-\frac{27\!\cdots\!79}{47\!\cdots\!75}a^{8}+\frac{15\!\cdots\!73}{47\!\cdots\!75}a^{7}-\frac{52\!\cdots\!66}{47\!\cdots\!75}a^{6}+\frac{37\!\cdots\!76}{47\!\cdots\!75}a^{5}+\frac{45\!\cdots\!87}{47\!\cdots\!75}a^{4}-\frac{20\!\cdots\!19}{47\!\cdots\!75}a^{3}-\frac{22\!\cdots\!74}{47\!\cdots\!75}a^{2}+\frac{27\!\cdots\!41}{94\!\cdots\!95}a-\frac{39\!\cdots\!53}{47\!\cdots\!75}$, $\frac{45\!\cdots\!24}{47\!\cdots\!75}a^{35}-\frac{12\!\cdots\!02}{47\!\cdots\!75}a^{34}+\frac{24\!\cdots\!18}{47\!\cdots\!75}a^{33}-\frac{44\!\cdots\!57}{47\!\cdots\!75}a^{32}+\frac{16\!\cdots\!46}{94\!\cdots\!95}a^{31}-\frac{82\!\cdots\!53}{24\!\cdots\!25}a^{30}+\frac{95\!\cdots\!52}{94\!\cdots\!95}a^{29}-\frac{96\!\cdots\!33}{47\!\cdots\!75}a^{28}+\frac{14\!\cdots\!99}{47\!\cdots\!75}a^{27}-\frac{13\!\cdots\!14}{47\!\cdots\!75}a^{26}+\frac{11\!\cdots\!59}{47\!\cdots\!75}a^{25}+\frac{40\!\cdots\!77}{47\!\cdots\!75}a^{24}-\frac{97\!\cdots\!69}{47\!\cdots\!75}a^{23}+\frac{20\!\cdots\!03}{47\!\cdots\!75}a^{22}-\frac{64\!\cdots\!19}{94\!\cdots\!95}a^{21}+\frac{43\!\cdots\!94}{47\!\cdots\!75}a^{20}-\frac{41\!\cdots\!01}{47\!\cdots\!75}a^{19}+\frac{94\!\cdots\!44}{18\!\cdots\!79}a^{18}+\frac{31\!\cdots\!38}{47\!\cdots\!75}a^{17}-\frac{39\!\cdots\!02}{18\!\cdots\!79}a^{16}+\frac{19\!\cdots\!73}{47\!\cdots\!75}a^{15}-\frac{28\!\cdots\!53}{47\!\cdots\!75}a^{14}+\frac{70\!\cdots\!62}{94\!\cdots\!95}a^{13}-\frac{39\!\cdots\!74}{47\!\cdots\!75}a^{12}+\frac{22\!\cdots\!83}{24\!\cdots\!25}a^{11}-\frac{43\!\cdots\!94}{47\!\cdots\!75}a^{10}+\frac{39\!\cdots\!09}{47\!\cdots\!75}a^{9}-\frac{27\!\cdots\!12}{47\!\cdots\!75}a^{8}+\frac{25\!\cdots\!32}{94\!\cdots\!95}a^{7}-\frac{62\!\cdots\!51}{94\!\cdots\!95}a^{6}-\frac{10\!\cdots\!96}{47\!\cdots\!75}a^{5}+\frac{29\!\cdots\!53}{47\!\cdots\!75}a^{4}-\frac{60\!\cdots\!43}{47\!\cdots\!75}a^{3}-\frac{96\!\cdots\!57}{47\!\cdots\!75}a^{2}+\frac{90\!\cdots\!24}{47\!\cdots\!75}a-\frac{17\!\cdots\!14}{47\!\cdots\!75}$, $\frac{38\!\cdots\!82}{47\!\cdots\!75}a^{35}-\frac{11\!\cdots\!52}{47\!\cdots\!75}a^{34}+\frac{26\!\cdots\!39}{47\!\cdots\!75}a^{33}-\frac{97\!\cdots\!44}{94\!\cdots\!95}a^{32}+\frac{88\!\cdots\!61}{47\!\cdots\!75}a^{31}-\frac{17\!\cdots\!81}{47\!\cdots\!75}a^{30}+\frac{66\!\cdots\!74}{94\!\cdots\!95}a^{29}-\frac{10\!\cdots\!24}{47\!\cdots\!75}a^{28}+\frac{19\!\cdots\!94}{47\!\cdots\!75}a^{27}-\frac{27\!\cdots\!77}{47\!\cdots\!75}a^{26}+\frac{20\!\cdots\!47}{47\!\cdots\!75}a^{25}+\frac{17\!\cdots\!76}{94\!\cdots\!95}a^{24}-\frac{96\!\cdots\!53}{47\!\cdots\!75}a^{23}+\frac{42\!\cdots\!97}{99\!\cdots\!41}a^{22}-\frac{42\!\cdots\!51}{47\!\cdots\!75}a^{21}+\frac{60\!\cdots\!91}{47\!\cdots\!75}a^{20}-\frac{79\!\cdots\!19}{47\!\cdots\!75}a^{19}+\frac{65\!\cdots\!34}{47\!\cdots\!75}a^{18}-\frac{25\!\cdots\!01}{47\!\cdots\!75}a^{17}-\frac{89\!\cdots\!44}{47\!\cdots\!75}a^{16}+\frac{20\!\cdots\!87}{47\!\cdots\!75}a^{15}-\frac{15\!\cdots\!86}{18\!\cdots\!79}a^{14}+\frac{20\!\cdots\!92}{18\!\cdots\!79}a^{13}-\frac{63\!\cdots\!74}{47\!\cdots\!75}a^{12}+\frac{69\!\cdots\!91}{47\!\cdots\!75}a^{11}-\frac{72\!\cdots\!39}{47\!\cdots\!75}a^{10}+\frac{73\!\cdots\!77}{47\!\cdots\!75}a^{9}-\frac{63\!\cdots\!56}{47\!\cdots\!75}a^{8}+\frac{38\!\cdots\!33}{47\!\cdots\!75}a^{7}-\frac{14\!\cdots\!76}{47\!\cdots\!75}a^{6}+\frac{25\!\cdots\!37}{94\!\cdots\!95}a^{5}+\frac{19\!\cdots\!53}{94\!\cdots\!95}a^{4}-\frac{37\!\cdots\!92}{47\!\cdots\!75}a^{3}+\frac{13\!\cdots\!59}{47\!\cdots\!75}a^{2}+\frac{28\!\cdots\!94}{47\!\cdots\!75}a-\frac{46\!\cdots\!88}{24\!\cdots\!25}$, $\frac{74\!\cdots\!32}{47\!\cdots\!75}a^{35}-\frac{19\!\cdots\!98}{47\!\cdots\!75}a^{34}+\frac{37\!\cdots\!23}{47\!\cdots\!75}a^{33}-\frac{68\!\cdots\!39}{47\!\cdots\!75}a^{32}+\frac{13\!\cdots\!13}{47\!\cdots\!75}a^{31}-\frac{48\!\cdots\!47}{94\!\cdots\!95}a^{30}+\frac{15\!\cdots\!23}{94\!\cdots\!95}a^{29}-\frac{14\!\cdots\!74}{47\!\cdots\!75}a^{28}+\frac{22\!\cdots\!11}{47\!\cdots\!75}a^{27}-\frac{39\!\cdots\!69}{94\!\cdots\!95}a^{26}+\frac{13\!\cdots\!77}{47\!\cdots\!75}a^{25}+\frac{65\!\cdots\!99}{47\!\cdots\!75}a^{24}-\frac{30\!\cdots\!86}{94\!\cdots\!95}a^{23}+\frac{65\!\cdots\!51}{94\!\cdots\!95}a^{22}-\frac{49\!\cdots\!76}{47\!\cdots\!75}a^{21}+\frac{66\!\cdots\!79}{47\!\cdots\!75}a^{20}-\frac{61\!\cdots\!36}{47\!\cdots\!75}a^{19}+\frac{17\!\cdots\!58}{24\!\cdots\!25}a^{18}+\frac{54\!\cdots\!98}{47\!\cdots\!75}a^{17}-\frac{15\!\cdots\!13}{47\!\cdots\!75}a^{16}+\frac{29\!\cdots\!96}{47\!\cdots\!75}a^{15}-\frac{42\!\cdots\!98}{47\!\cdots\!75}a^{14}+\frac{53\!\cdots\!24}{47\!\cdots\!75}a^{13}-\frac{59\!\cdots\!36}{47\!\cdots\!75}a^{12}+\frac{62\!\cdots\!24}{47\!\cdots\!75}a^{11}-\frac{64\!\cdots\!16}{47\!\cdots\!75}a^{10}+\frac{11\!\cdots\!54}{94\!\cdots\!95}a^{9}-\frac{39\!\cdots\!81}{47\!\cdots\!75}a^{8}+\frac{17\!\cdots\!01}{47\!\cdots\!75}a^{7}-\frac{34\!\cdots\!44}{47\!\cdots\!75}a^{6}-\frac{50\!\cdots\!43}{47\!\cdots\!75}a^{5}+\frac{41\!\cdots\!24}{47\!\cdots\!75}a^{4}-\frac{38\!\cdots\!14}{47\!\cdots\!75}a^{3}-\frac{22\!\cdots\!34}{47\!\cdots\!75}a^{2}+\frac{11\!\cdots\!96}{47\!\cdots\!75}a-\frac{74\!\cdots\!76}{18\!\cdots\!79}$, $\frac{58\!\cdots\!93}{47\!\cdots\!75}a^{35}-\frac{19\!\cdots\!13}{47\!\cdots\!75}a^{34}+\frac{39\!\cdots\!96}{47\!\cdots\!75}a^{33}-\frac{14\!\cdots\!54}{94\!\cdots\!95}a^{32}+\frac{72\!\cdots\!96}{24\!\cdots\!25}a^{31}-\frac{25\!\cdots\!64}{47\!\cdots\!75}a^{30}+\frac{14\!\cdots\!77}{94\!\cdots\!95}a^{29}-\frac{15\!\cdots\!06}{47\!\cdots\!75}a^{28}+\frac{25\!\cdots\!11}{47\!\cdots\!75}a^{27}-\frac{26\!\cdots\!83}{47\!\cdots\!75}a^{26}+\frac{89\!\cdots\!78}{47\!\cdots\!75}a^{25}+\frac{56\!\cdots\!21}{49\!\cdots\!05}a^{24}-\frac{15\!\cdots\!17}{47\!\cdots\!75}a^{23}+\frac{67\!\cdots\!33}{94\!\cdots\!95}a^{22}-\frac{55\!\cdots\!94}{47\!\cdots\!75}a^{21}+\frac{76\!\cdots\!59}{47\!\cdots\!75}a^{20}-\frac{79\!\cdots\!21}{47\!\cdots\!75}a^{19}+\frac{53\!\cdots\!86}{47\!\cdots\!75}a^{18}+\frac{31\!\cdots\!21}{47\!\cdots\!75}a^{17}-\frac{15\!\cdots\!51}{47\!\cdots\!75}a^{16}+\frac{31\!\cdots\!28}{47\!\cdots\!75}a^{15}-\frac{97\!\cdots\!79}{94\!\cdots\!95}a^{14}+\frac{12\!\cdots\!01}{94\!\cdots\!95}a^{13}-\frac{72\!\cdots\!96}{47\!\cdots\!75}a^{12}+\frac{76\!\cdots\!69}{47\!\cdots\!75}a^{11}-\frac{79\!\cdots\!41}{47\!\cdots\!75}a^{10}+\frac{74\!\cdots\!13}{47\!\cdots\!75}a^{9}-\frac{56\!\cdots\!29}{47\!\cdots\!75}a^{8}+\frac{29\!\cdots\!32}{47\!\cdots\!75}a^{7}-\frac{79\!\cdots\!69}{47\!\cdots\!75}a^{6}-\frac{12\!\cdots\!84}{94\!\cdots\!95}a^{5}+\frac{46\!\cdots\!61}{18\!\cdots\!79}a^{4}-\frac{99\!\cdots\!17}{24\!\cdots\!25}a^{3}-\frac{40\!\cdots\!14}{47\!\cdots\!75}a^{2}+\frac{24\!\cdots\!91}{47\!\cdots\!75}a-\frac{36\!\cdots\!88}{47\!\cdots\!75}$, $\frac{58\!\cdots\!19}{94\!\cdots\!95}a^{35}-\frac{14\!\cdots\!98}{94\!\cdots\!95}a^{34}+\frac{13\!\cdots\!69}{47\!\cdots\!75}a^{33}-\frac{50\!\cdots\!92}{94\!\cdots\!95}a^{32}+\frac{48\!\cdots\!21}{47\!\cdots\!75}a^{31}-\frac{89\!\cdots\!64}{47\!\cdots\!75}a^{30}+\frac{57\!\cdots\!12}{94\!\cdots\!95}a^{29}-\frac{22\!\cdots\!94}{18\!\cdots\!79}a^{28}+\frac{16\!\cdots\!36}{94\!\cdots\!95}a^{27}-\frac{67\!\cdots\!98}{47\!\cdots\!75}a^{26}-\frac{13\!\cdots\!47}{94\!\cdots\!95}a^{25}+\frac{50\!\cdots\!36}{94\!\cdots\!95}a^{24}-\frac{56\!\cdots\!01}{47\!\cdots\!75}a^{23}+\frac{63\!\cdots\!06}{24\!\cdots\!25}a^{22}-\frac{17\!\cdots\!34}{47\!\cdots\!75}a^{21}+\frac{12\!\cdots\!91}{24\!\cdots\!25}a^{20}-\frac{21\!\cdots\!06}{47\!\cdots\!75}a^{19}+\frac{10\!\cdots\!34}{47\!\cdots\!75}a^{18}+\frac{22\!\cdots\!79}{47\!\cdots\!75}a^{17}-\frac{12\!\cdots\!54}{99\!\cdots\!41}a^{16}+\frac{11\!\cdots\!41}{47\!\cdots\!75}a^{15}-\frac{15\!\cdots\!52}{47\!\cdots\!75}a^{14}+\frac{19\!\cdots\!94}{47\!\cdots\!75}a^{13}-\frac{85\!\cdots\!82}{18\!\cdots\!79}a^{12}+\frac{22\!\cdots\!18}{47\!\cdots\!75}a^{11}-\frac{45\!\cdots\!94}{94\!\cdots\!95}a^{10}+\frac{20\!\cdots\!33}{47\!\cdots\!75}a^{9}-\frac{26\!\cdots\!74}{94\!\cdots\!95}a^{8}+\frac{11\!\cdots\!21}{94\!\cdots\!95}a^{7}-\frac{96\!\cdots\!82}{47\!\cdots\!75}a^{6}-\frac{16\!\cdots\!66}{47\!\cdots\!75}a^{5}+\frac{10\!\cdots\!88}{47\!\cdots\!75}a^{4}-\frac{30\!\cdots\!04}{47\!\cdots\!75}a^{3}-\frac{55\!\cdots\!88}{47\!\cdots\!75}a^{2}+\frac{63\!\cdots\!26}{94\!\cdots\!95}a-\frac{64\!\cdots\!68}{47\!\cdots\!75}$, $\frac{38\!\cdots\!24}{47\!\cdots\!75}a^{35}-\frac{89\!\cdots\!97}{47\!\cdots\!75}a^{34}+\frac{33\!\cdots\!46}{94\!\cdots\!95}a^{33}-\frac{29\!\cdots\!47}{47\!\cdots\!75}a^{32}+\frac{58\!\cdots\!03}{47\!\cdots\!75}a^{31}-\frac{10\!\cdots\!14}{47\!\cdots\!75}a^{30}+\frac{14\!\cdots\!67}{18\!\cdots\!79}a^{29}-\frac{65\!\cdots\!93}{47\!\cdots\!75}a^{28}+\frac{97\!\cdots\!49}{47\!\cdots\!75}a^{27}-\frac{71\!\cdots\!78}{47\!\cdots\!75}a^{26}-\frac{22\!\cdots\!56}{47\!\cdots\!75}a^{25}+\frac{32\!\cdots\!42}{47\!\cdots\!75}a^{24}-\frac{68\!\cdots\!07}{47\!\cdots\!75}a^{23}+\frac{30\!\cdots\!45}{99\!\cdots\!41}a^{22}-\frac{20\!\cdots\!72}{47\!\cdots\!75}a^{21}+\frac{27\!\cdots\!81}{47\!\cdots\!75}a^{20}-\frac{22\!\cdots\!54}{47\!\cdots\!75}a^{19}+\frac{95\!\cdots\!22}{47\!\cdots\!75}a^{18}+\frac{62\!\cdots\!26}{94\!\cdots\!95}a^{17}-\frac{14\!\cdots\!48}{94\!\cdots\!95}a^{16}+\frac{13\!\cdots\!01}{47\!\cdots\!75}a^{15}-\frac{17\!\cdots\!14}{47\!\cdots\!75}a^{14}+\frac{21\!\cdots\!02}{47\!\cdots\!75}a^{13}-\frac{12\!\cdots\!66}{24\!\cdots\!25}a^{12}+\frac{24\!\cdots\!31}{47\!\cdots\!75}a^{11}-\frac{25\!\cdots\!04}{47\!\cdots\!75}a^{10}+\frac{21\!\cdots\!53}{47\!\cdots\!75}a^{9}-\frac{13\!\cdots\!37}{47\!\cdots\!75}a^{8}+\frac{91\!\cdots\!99}{94\!\cdots\!95}a^{7}-\frac{11\!\cdots\!51}{47\!\cdots\!75}a^{6}-\frac{44\!\cdots\!49}{47\!\cdots\!75}a^{5}+\frac{12\!\cdots\!77}{47\!\cdots\!75}a^{4}+\frac{39\!\cdots\!52}{94\!\cdots\!95}a^{3}-\frac{77\!\cdots\!69}{24\!\cdots\!25}a^{2}+\frac{23\!\cdots\!39}{47\!\cdots\!75}a+\frac{15\!\cdots\!12}{47\!\cdots\!75}$, $\frac{92\!\cdots\!67}{94\!\cdots\!95}a^{35}-\frac{28\!\cdots\!56}{47\!\cdots\!75}a^{34}+\frac{13\!\cdots\!89}{47\!\cdots\!75}a^{33}-\frac{18\!\cdots\!99}{47\!\cdots\!75}a^{32}+\frac{81\!\cdots\!97}{47\!\cdots\!75}a^{31}-\frac{76\!\cdots\!79}{47\!\cdots\!75}a^{30}+\frac{41\!\cdots\!69}{94\!\cdots\!95}a^{29}-\frac{12\!\cdots\!45}{99\!\cdots\!41}a^{28}-\frac{19\!\cdots\!88}{47\!\cdots\!75}a^{27}+\frac{11\!\cdots\!37}{47\!\cdots\!75}a^{26}-\frac{18\!\cdots\!82}{49\!\cdots\!05}a^{25}+\frac{35\!\cdots\!24}{47\!\cdots\!75}a^{24}-\frac{71\!\cdots\!83}{24\!\cdots\!25}a^{23}+\frac{69\!\cdots\!46}{94\!\cdots\!95}a^{22}+\frac{10\!\cdots\!97}{94\!\cdots\!95}a^{21}-\frac{97\!\cdots\!92}{47\!\cdots\!75}a^{20}+\frac{30\!\cdots\!23}{47\!\cdots\!75}a^{19}-\frac{35\!\cdots\!57}{47\!\cdots\!75}a^{18}+\frac{57\!\cdots\!19}{47\!\cdots\!75}a^{17}-\frac{19\!\cdots\!44}{47\!\cdots\!75}a^{16}+\frac{14\!\cdots\!04}{47\!\cdots\!75}a^{15}+\frac{59\!\cdots\!67}{47\!\cdots\!75}a^{14}-\frac{10\!\cdots\!06}{47\!\cdots\!75}a^{13}+\frac{16\!\cdots\!93}{47\!\cdots\!75}a^{12}-\frac{19\!\cdots\!57}{47\!\cdots\!75}a^{11}+\frac{20\!\cdots\!23}{47\!\cdots\!75}a^{10}-\frac{26\!\cdots\!07}{47\!\cdots\!75}a^{9}+\frac{57\!\cdots\!49}{94\!\cdots\!95}a^{8}-\frac{21\!\cdots\!97}{47\!\cdots\!75}a^{7}+\frac{93\!\cdots\!97}{47\!\cdots\!75}a^{6}-\frac{81\!\cdots\!38}{47\!\cdots\!75}a^{5}-\frac{70\!\cdots\!66}{47\!\cdots\!75}a^{4}+\frac{28\!\cdots\!88}{47\!\cdots\!75}a^{3}+\frac{18\!\cdots\!02}{47\!\cdots\!75}a^{2}-\frac{24\!\cdots\!43}{47\!\cdots\!75}a+\frac{83\!\cdots\!52}{47\!\cdots\!75}$, $\frac{77\!\cdots\!62}{47\!\cdots\!75}a^{35}-\frac{20\!\cdots\!98}{47\!\cdots\!75}a^{34}+\frac{40\!\cdots\!98}{47\!\cdots\!75}a^{33}-\frac{73\!\cdots\!49}{47\!\cdots\!75}a^{32}+\frac{14\!\cdots\!48}{47\!\cdots\!75}a^{31}-\frac{10\!\cdots\!76}{18\!\cdots\!79}a^{30}+\frac{15\!\cdots\!87}{94\!\cdots\!95}a^{29}-\frac{15\!\cdots\!74}{47\!\cdots\!75}a^{28}+\frac{24\!\cdots\!71}{47\!\cdots\!75}a^{27}-\frac{44\!\cdots\!66}{94\!\cdots\!95}a^{26}+\frac{14\!\cdots\!42}{47\!\cdots\!75}a^{25}+\frac{67\!\cdots\!34}{47\!\cdots\!75}a^{24}-\frac{32\!\cdots\!82}{94\!\cdots\!95}a^{23}+\frac{69\!\cdots\!18}{94\!\cdots\!95}a^{22}-\frac{53\!\cdots\!06}{47\!\cdots\!75}a^{21}+\frac{72\!\cdots\!44}{47\!\cdots\!75}a^{20}-\frac{67\!\cdots\!61}{47\!\cdots\!75}a^{19}+\frac{38\!\cdots\!47}{47\!\cdots\!75}a^{18}+\frac{53\!\cdots\!23}{47\!\cdots\!75}a^{17}-\frac{16\!\cdots\!28}{47\!\cdots\!75}a^{16}+\frac{32\!\cdots\!01}{47\!\cdots\!75}a^{15}-\frac{46\!\cdots\!13}{47\!\cdots\!75}a^{14}+\frac{58\!\cdots\!79}{47\!\cdots\!75}a^{13}-\frac{65\!\cdots\!11}{47\!\cdots\!75}a^{12}+\frac{69\!\cdots\!09}{47\!\cdots\!75}a^{11}-\frac{71\!\cdots\!66}{47\!\cdots\!75}a^{10}+\frac{25\!\cdots\!23}{18\!\cdots\!79}a^{9}-\frac{44\!\cdots\!71}{47\!\cdots\!75}a^{8}+\frac{20\!\cdots\!56}{47\!\cdots\!75}a^{7}-\frac{49\!\cdots\!59}{47\!\cdots\!75}a^{6}-\frac{22\!\cdots\!73}{47\!\cdots\!75}a^{5}+\frac{48\!\cdots\!19}{47\!\cdots\!75}a^{4}-\frac{44\!\cdots\!76}{24\!\cdots\!25}a^{3}-\frac{16\!\cdots\!39}{47\!\cdots\!75}a^{2}+\frac{14\!\cdots\!91}{47\!\cdots\!75}a-\frac{47\!\cdots\!43}{94\!\cdots\!95}$, $\frac{26\!\cdots\!06}{47\!\cdots\!75}a^{35}-\frac{71\!\cdots\!91}{47\!\cdots\!75}a^{34}+\frac{13\!\cdots\!89}{47\!\cdots\!75}a^{33}-\frac{49\!\cdots\!12}{94\!\cdots\!95}a^{32}+\frac{47\!\cdots\!51}{47\!\cdots\!75}a^{31}-\frac{17\!\cdots\!44}{94\!\cdots\!95}a^{30}+\frac{10\!\cdots\!90}{18\!\cdots\!79}a^{29}-\frac{54\!\cdots\!52}{47\!\cdots\!75}a^{28}+\frac{44\!\cdots\!93}{24\!\cdots\!25}a^{27}-\frac{14\!\cdots\!69}{94\!\cdots\!95}a^{26}+\frac{22\!\cdots\!36}{47\!\cdots\!75}a^{25}+\frac{94\!\cdots\!50}{18\!\cdots\!79}a^{24}-\frac{55\!\cdots\!77}{47\!\cdots\!75}a^{23}+\frac{11\!\cdots\!12}{47\!\cdots\!75}a^{22}-\frac{36\!\cdots\!67}{94\!\cdots\!95}a^{21}+\frac{48\!\cdots\!39}{94\!\cdots\!95}a^{20}-\frac{45\!\cdots\!27}{94\!\cdots\!95}a^{19}+\frac{12\!\cdots\!64}{47\!\cdots\!75}a^{18}+\frac{19\!\cdots\!94}{47\!\cdots\!75}a^{17}-\frac{56\!\cdots\!42}{47\!\cdots\!75}a^{16}+\frac{10\!\cdots\!34}{47\!\cdots\!75}a^{15}-\frac{15\!\cdots\!61}{47\!\cdots\!75}a^{14}+\frac{10\!\cdots\!78}{24\!\cdots\!25}a^{13}-\frac{21\!\cdots\!12}{47\!\cdots\!75}a^{12}+\frac{12\!\cdots\!38}{24\!\cdots\!25}a^{11}-\frac{23\!\cdots\!47}{47\!\cdots\!75}a^{10}+\frac{25\!\cdots\!57}{55\!\cdots\!79}a^{9}-\frac{14\!\cdots\!48}{47\!\cdots\!75}a^{8}+\frac{65\!\cdots\!04}{47\!\cdots\!75}a^{7}-\frac{12\!\cdots\!99}{47\!\cdots\!75}a^{6}-\frac{12\!\cdots\!72}{26\!\cdots\!25}a^{5}+\frac{18\!\cdots\!94}{47\!\cdots\!75}a^{4}-\frac{25\!\cdots\!13}{47\!\cdots\!75}a^{3}-\frac{48\!\cdots\!57}{47\!\cdots\!75}a^{2}+\frac{37\!\cdots\!67}{47\!\cdots\!75}a-\frac{15\!\cdots\!29}{94\!\cdots\!95}$, $\frac{10\!\cdots\!46}{47\!\cdots\!75}a^{35}-\frac{29\!\cdots\!01}{47\!\cdots\!75}a^{34}+\frac{56\!\cdots\!43}{47\!\cdots\!75}a^{33}-\frac{20\!\cdots\!68}{94\!\cdots\!95}a^{32}+\frac{19\!\cdots\!12}{47\!\cdots\!75}a^{31}-\frac{36\!\cdots\!94}{47\!\cdots\!75}a^{30}+\frac{44\!\cdots\!51}{18\!\cdots\!79}a^{29}-\frac{11\!\cdots\!13}{24\!\cdots\!25}a^{28}+\frac{34\!\cdots\!82}{47\!\cdots\!75}a^{27}-\frac{31\!\cdots\!93}{47\!\cdots\!75}a^{26}+\frac{24\!\cdots\!16}{47\!\cdots\!75}a^{25}+\frac{18\!\cdots\!13}{94\!\cdots\!95}a^{24}-\frac{22\!\cdots\!63}{47\!\cdots\!75}a^{23}+\frac{48\!\cdots\!61}{47\!\cdots\!75}a^{22}-\frac{75\!\cdots\!94}{47\!\cdots\!75}a^{21}+\frac{10\!\cdots\!29}{47\!\cdots\!75}a^{20}-\frac{50\!\cdots\!34}{24\!\cdots\!25}a^{19}+\frac{54\!\cdots\!38}{47\!\cdots\!75}a^{18}+\frac{74\!\cdots\!83}{47\!\cdots\!75}a^{17}-\frac{22\!\cdots\!47}{47\!\cdots\!75}a^{16}+\frac{90\!\cdots\!37}{94\!\cdots\!95}a^{15}-\frac{34\!\cdots\!42}{24\!\cdots\!25}a^{14}+\frac{82\!\cdots\!36}{47\!\cdots\!75}a^{13}-\frac{92\!\cdots\!87}{47\!\cdots\!75}a^{12}+\frac{19\!\cdots\!29}{94\!\cdots\!95}a^{11}-\frac{10\!\cdots\!57}{47\!\cdots\!75}a^{10}+\frac{91\!\cdots\!33}{47\!\cdots\!75}a^{9}-\frac{63\!\cdots\!98}{47\!\cdots\!75}a^{8}+\frac{29\!\cdots\!19}{47\!\cdots\!75}a^{7}-\frac{71\!\cdots\!11}{47\!\cdots\!75}a^{6}-\frac{30\!\cdots\!84}{47\!\cdots\!75}a^{5}+\frac{69\!\cdots\!27}{47\!\cdots\!75}a^{4}-\frac{12\!\cdots\!77}{47\!\cdots\!75}a^{3}-\frac{54\!\cdots\!59}{94\!\cdots\!95}a^{2}+\frac{20\!\cdots\!37}{47\!\cdots\!75}a-\frac{39\!\cdots\!53}{47\!\cdots\!75}$, $\frac{18\!\cdots\!41}{47\!\cdots\!75}a^{35}-\frac{46\!\cdots\!19}{47\!\cdots\!75}a^{34}+\frac{48\!\cdots\!06}{26\!\cdots\!25}a^{33}-\frac{15\!\cdots\!07}{47\!\cdots\!75}a^{32}+\frac{30\!\cdots\!29}{47\!\cdots\!75}a^{31}-\frac{11\!\cdots\!32}{94\!\cdots\!95}a^{30}+\frac{35\!\cdots\!24}{94\!\cdots\!95}a^{29}-\frac{34\!\cdots\!22}{47\!\cdots\!75}a^{28}+\frac{52\!\cdots\!53}{47\!\cdots\!75}a^{27}-\frac{84\!\cdots\!23}{94\!\cdots\!95}a^{26}-\frac{44\!\cdots\!89}{47\!\cdots\!75}a^{25}+\frac{16\!\cdots\!82}{47\!\cdots\!75}a^{24}-\frac{14\!\cdots\!17}{18\!\cdots\!79}a^{23}+\frac{15\!\cdots\!94}{99\!\cdots\!41}a^{22}-\frac{11\!\cdots\!48}{47\!\cdots\!75}a^{21}+\frac{15\!\cdots\!12}{47\!\cdots\!75}a^{20}-\frac{13\!\cdots\!28}{47\!\cdots\!75}a^{19}+\frac{66\!\cdots\!26}{47\!\cdots\!75}a^{18}+\frac{13\!\cdots\!04}{47\!\cdots\!75}a^{17}-\frac{35\!\cdots\!44}{47\!\cdots\!75}a^{16}+\frac{69\!\cdots\!78}{47\!\cdots\!75}a^{15}-\frac{96\!\cdots\!29}{47\!\cdots\!75}a^{14}+\frac{12\!\cdots\!62}{47\!\cdots\!75}a^{13}-\frac{13\!\cdots\!33}{47\!\cdots\!75}a^{12}+\frac{73\!\cdots\!03}{24\!\cdots\!25}a^{11}-\frac{14\!\cdots\!53}{47\!\cdots\!75}a^{10}+\frac{26\!\cdots\!96}{99\!\cdots\!41}a^{9}-\frac{83\!\cdots\!33}{47\!\cdots\!75}a^{8}+\frac{35\!\cdots\!03}{47\!\cdots\!75}a^{7}-\frac{71\!\cdots\!77}{47\!\cdots\!75}a^{6}-\frac{12\!\cdots\!94}{47\!\cdots\!75}a^{5}+\frac{20\!\cdots\!17}{47\!\cdots\!75}a^{4}+\frac{80\!\cdots\!72}{24\!\cdots\!25}a^{3}-\frac{51\!\cdots\!57}{47\!\cdots\!75}a^{2}-\frac{30\!\cdots\!47}{47\!\cdots\!75}a+\frac{97\!\cdots\!31}{94\!\cdots\!95}$, $\frac{26\!\cdots\!19}{18\!\cdots\!79}a^{35}-\frac{22\!\cdots\!86}{47\!\cdots\!75}a^{34}+\frac{46\!\cdots\!13}{47\!\cdots\!75}a^{33}-\frac{85\!\cdots\!74}{47\!\cdots\!75}a^{32}+\frac{16\!\cdots\!88}{47\!\cdots\!75}a^{31}-\frac{30\!\cdots\!78}{47\!\cdots\!75}a^{30}+\frac{16\!\cdots\!87}{94\!\cdots\!95}a^{29}-\frac{36\!\cdots\!37}{94\!\cdots\!95}a^{28}+\frac{16\!\cdots\!38}{24\!\cdots\!25}a^{27}-\frac{32\!\cdots\!31}{47\!\cdots\!75}a^{26}+\frac{25\!\cdots\!49}{94\!\cdots\!95}a^{25}+\frac{58\!\cdots\!74}{47\!\cdots\!75}a^{24}-\frac{18\!\cdots\!88}{47\!\cdots\!75}a^{23}+\frac{39\!\cdots\!24}{47\!\cdots\!75}a^{22}-\frac{65\!\cdots\!94}{47\!\cdots\!75}a^{21}+\frac{48\!\cdots\!98}{24\!\cdots\!25}a^{20}-\frac{98\!\cdots\!28}{47\!\cdots\!75}a^{19}+\frac{68\!\cdots\!27}{47\!\cdots\!75}a^{18}+\frac{27\!\cdots\!58}{47\!\cdots\!75}a^{17}-\frac{17\!\cdots\!59}{47\!\cdots\!75}a^{16}+\frac{73\!\cdots\!54}{94\!\cdots\!95}a^{15}-\frac{23\!\cdots\!36}{18\!\cdots\!79}a^{14}+\frac{39\!\cdots\!32}{24\!\cdots\!25}a^{13}-\frac{49\!\cdots\!03}{26\!\cdots\!25}a^{12}+\frac{95\!\cdots\!26}{47\!\cdots\!75}a^{11}-\frac{98\!\cdots\!67}{47\!\cdots\!75}a^{10}+\frac{94\!\cdots\!76}{47\!\cdots\!75}a^{9}-\frac{14\!\cdots\!52}{94\!\cdots\!95}a^{8}+\frac{40\!\cdots\!83}{47\!\cdots\!75}a^{7}-\frac{27\!\cdots\!66}{94\!\cdots\!95}a^{6}+\frac{18\!\cdots\!66}{47\!\cdots\!75}a^{5}+\frac{34\!\cdots\!97}{47\!\cdots\!75}a^{4}-\frac{10\!\cdots\!76}{47\!\cdots\!75}a^{3}-\frac{59\!\cdots\!91}{47\!\cdots\!75}a^{2}+\frac{29\!\cdots\!47}{47\!\cdots\!75}a-\frac{28\!\cdots\!54}{24\!\cdots\!25}$, $\frac{12\!\cdots\!82}{94\!\cdots\!95}a^{35}-\frac{36\!\cdots\!57}{94\!\cdots\!95}a^{34}+\frac{35\!\cdots\!88}{47\!\cdots\!75}a^{33}-\frac{26\!\cdots\!54}{18\!\cdots\!79}a^{32}+\frac{12\!\cdots\!07}{47\!\cdots\!75}a^{31}-\frac{23\!\cdots\!03}{47\!\cdots\!75}a^{30}+\frac{27\!\cdots\!64}{18\!\cdots\!79}a^{29}-\frac{28\!\cdots\!84}{94\!\cdots\!95}a^{28}+\frac{44\!\cdots\!44}{94\!\cdots\!95}a^{27}-\frac{20\!\cdots\!11}{47\!\cdots\!75}a^{26}+\frac{63\!\cdots\!07}{94\!\cdots\!95}a^{25}+\frac{11\!\cdots\!93}{94\!\cdots\!95}a^{24}-\frac{14\!\cdots\!17}{47\!\cdots\!75}a^{23}+\frac{30\!\cdots\!08}{47\!\cdots\!75}a^{22}-\frac{48\!\cdots\!68}{47\!\cdots\!75}a^{21}+\frac{34\!\cdots\!72}{24\!\cdots\!25}a^{20}-\frac{63\!\cdots\!92}{47\!\cdots\!75}a^{19}+\frac{37\!\cdots\!28}{47\!\cdots\!75}a^{18}+\frac{42\!\cdots\!18}{47\!\cdots\!75}a^{17}-\frac{28\!\cdots\!12}{94\!\cdots\!95}a^{16}+\frac{28\!\cdots\!12}{47\!\cdots\!75}a^{15}-\frac{42\!\cdots\!54}{47\!\cdots\!75}a^{14}+\frac{53\!\cdots\!68}{47\!\cdots\!75}a^{13}-\frac{12\!\cdots\!38}{94\!\cdots\!95}a^{12}+\frac{63\!\cdots\!86}{47\!\cdots\!75}a^{11}-\frac{13\!\cdots\!22}{94\!\cdots\!95}a^{10}+\frac{60\!\cdots\!96}{47\!\cdots\!75}a^{9}-\frac{17\!\cdots\!47}{18\!\cdots\!79}a^{8}+\frac{41\!\cdots\!17}{94\!\cdots\!95}a^{7}-\frac{54\!\cdots\!69}{47\!\cdots\!75}a^{6}-\frac{90\!\cdots\!27}{47\!\cdots\!75}a^{5}+\frac{26\!\cdots\!69}{24\!\cdots\!25}a^{4}-\frac{10\!\cdots\!08}{47\!\cdots\!75}a^{3}-\frac{18\!\cdots\!76}{47\!\cdots\!75}a^{2}+\frac{28\!\cdots\!28}{94\!\cdots\!95}a-\frac{30\!\cdots\!81}{47\!\cdots\!75}$, $\frac{20\!\cdots\!58}{24\!\cdots\!25}a^{35}-\frac{11\!\cdots\!48}{47\!\cdots\!75}a^{34}+\frac{43\!\cdots\!43}{94\!\cdots\!95}a^{33}-\frac{39\!\cdots\!94}{47\!\cdots\!75}a^{32}+\frac{75\!\cdots\!36}{47\!\cdots\!75}a^{31}-\frac{14\!\cdots\!67}{47\!\cdots\!75}a^{30}+\frac{84\!\cdots\!41}{94\!\cdots\!95}a^{29}-\frac{85\!\cdots\!94}{47\!\cdots\!75}a^{28}+\frac{13\!\cdots\!51}{47\!\cdots\!75}a^{27}-\frac{66\!\cdots\!86}{24\!\cdots\!25}a^{26}+\frac{20\!\cdots\!52}{47\!\cdots\!75}a^{25}+\frac{34\!\cdots\!34}{47\!\cdots\!75}a^{24}-\frac{86\!\cdots\!33}{47\!\cdots\!75}a^{23}+\frac{18\!\cdots\!77}{47\!\cdots\!75}a^{22}-\frac{15\!\cdots\!92}{24\!\cdots\!25}a^{21}+\frac{40\!\cdots\!56}{47\!\cdots\!75}a^{20}-\frac{38\!\cdots\!34}{47\!\cdots\!75}a^{19}+\frac{23\!\cdots\!09}{47\!\cdots\!75}a^{18}+\frac{50\!\cdots\!94}{94\!\cdots\!95}a^{17}-\frac{86\!\cdots\!43}{47\!\cdots\!75}a^{16}+\frac{17\!\cdots\!84}{47\!\cdots\!75}a^{15}-\frac{14\!\cdots\!31}{26\!\cdots\!25}a^{14}+\frac{32\!\cdots\!51}{47\!\cdots\!75}a^{13}-\frac{36\!\cdots\!91}{47\!\cdots\!75}a^{12}+\frac{39\!\cdots\!23}{47\!\cdots\!75}a^{11}-\frac{40\!\cdots\!16}{47\!\cdots\!75}a^{10}+\frac{36\!\cdots\!19}{47\!\cdots\!75}a^{9}-\frac{26\!\cdots\!26}{47\!\cdots\!75}a^{8}+\frac{13\!\cdots\!61}{47\!\cdots\!75}a^{7}-\frac{71\!\cdots\!18}{94\!\cdots\!95}a^{6}+\frac{38\!\cdots\!54}{47\!\cdots\!75}a^{5}+\frac{31\!\cdots\!43}{47\!\cdots\!75}a^{4}-\frac{70\!\cdots\!41}{47\!\cdots\!75}a^{3}-\frac{90\!\cdots\!03}{47\!\cdots\!75}a^{2}+\frac{88\!\cdots\!11}{47\!\cdots\!75}a-\frac{15\!\cdots\!29}{47\!\cdots\!75}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 17144737531.469992 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 17144737531.469992 \cdot 1}{10\cdot\sqrt{9970805384609063732920125000000000000000000000000}}\cr\approx \mathstrut & 0.126474610781051 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - 3*x^35 + 6*x^34 - 11*x^33 + 21*x^32 - 39*x^31 + 113*x^30 - 237*x^29 + 381*x^28 - 379*x^27 + 102*x^26 + 873*x^25 - 2357*x^24 + 5118*x^23 - 8217*x^22 + 11388*x^21 - 11523*x^20 + 7506*x^19 + 5558*x^18 - 23193*x^17 + 47733*x^16 - 72176*x^15 + 93003*x^14 - 106809*x^13 + 114281*x^12 - 118527*x^11 + 110259*x^10 - 81844*x^9 + 43665*x^8 - 14157*x^7 + 1524*x^6 + 732*x^5 - 297*x^4 + 7*x^3 + 27*x^2 - 9*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - 3*x^35 + 6*x^34 - 11*x^33 + 21*x^32 - 39*x^31 + 113*x^30 - 237*x^29 + 381*x^28 - 379*x^27 + 102*x^26 + 873*x^25 - 2357*x^24 + 5118*x^23 - 8217*x^22 + 11388*x^21 - 11523*x^20 + 7506*x^19 + 5558*x^18 - 23193*x^17 + 47733*x^16 - 72176*x^15 + 93003*x^14 - 106809*x^13 + 114281*x^12 - 118527*x^11 + 110259*x^10 - 81844*x^9 + 43665*x^8 - 14157*x^7 + 1524*x^6 + 732*x^5 - 297*x^4 + 7*x^3 + 27*x^2 - 9*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - 3*x^35 + 6*x^34 - 11*x^33 + 21*x^32 - 39*x^31 + 113*x^30 - 237*x^29 + 381*x^28 - 379*x^27 + 102*x^26 + 873*x^25 - 2357*x^24 + 5118*x^23 - 8217*x^22 + 11388*x^21 - 11523*x^20 + 7506*x^19 + 5558*x^18 - 23193*x^17 + 47733*x^16 - 72176*x^15 + 93003*x^14 - 106809*x^13 + 114281*x^12 - 118527*x^11 + 110259*x^10 - 81844*x^9 + 43665*x^8 - 14157*x^7 + 1524*x^6 + 732*x^5 - 297*x^4 + 7*x^3 + 27*x^2 - 9*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 3*x^35 + 6*x^34 - 11*x^33 + 21*x^32 - 39*x^31 + 113*x^30 - 237*x^29 + 381*x^28 - 379*x^27 + 102*x^26 + 873*x^25 - 2357*x^24 + 5118*x^23 - 8217*x^22 + 11388*x^21 - 11523*x^20 + 7506*x^19 + 5558*x^18 - 23193*x^17 + 47733*x^16 - 72176*x^15 + 93003*x^14 - 106809*x^13 + 114281*x^12 - 118527*x^11 + 110259*x^10 - 81844*x^9 + 43665*x^8 - 14157*x^7 + 1524*x^6 + 732*x^5 - 297*x^4 + 7*x^3 + 27*x^2 - 9*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\times C_{12}$ (as 36T27):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 72
The 36 conjugacy class representatives for $S_3\times C_{12}$
Character table for $S_3\times C_{12}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 3.1.1620.1, \(\Q(\zeta_{5})\), 6.6.820125.1, 6.2.13122000.3, 9.3.4251528000.1, 12.0.84075626953125.1, 12.0.21523360500000000.3, 18.6.2259436291848000000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 24 sibling: data not computed
Degree 36 sibling: deg 36
Minimal sibling: 24.0.2754990144000000000000000000.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.12.0.1}{12} }^{3}$ ${\href{/padicField/11.6.0.1}{6} }^{4}{,}\,{\href{/padicField/11.3.0.1}{3} }^{4}$ ${\href{/padicField/13.12.0.1}{12} }^{3}$ ${\href{/padicField/17.4.0.1}{4} }^{9}$ ${\href{/padicField/19.2.0.1}{2} }^{18}$ ${\href{/padicField/23.12.0.1}{12} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{6}$ ${\href{/padicField/31.6.0.1}{6} }^{4}{,}\,{\href{/padicField/31.3.0.1}{3} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{9}$ ${\href{/padicField/41.3.0.1}{3} }^{12}$ ${\href{/padicField/43.12.0.1}{12} }^{3}$ ${\href{/padicField/47.12.0.1}{12} }^{3}$ ${\href{/padicField/53.4.0.1}{4} }^{9}$ ${\href{/padicField/59.6.0.1}{6} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.0.1$x^{12} + x^{7} + x^{6} + x^{5} + x^{3} + x + 1$$1$$12$$0$$C_{12}$$[\ ]^{12}$
Deg $24$$2$$12$$24$
\(3\) Copy content Toggle raw display Deg $36$$3$$12$$48$
\(5\) Copy content Toggle raw display 5.12.9.2$x^{12} + 12 x^{10} + 12 x^{9} + 69 x^{8} + 108 x^{7} + 42 x^{6} - 396 x^{5} + 840 x^{4} + 252 x^{3} + 1476 x^{2} + 684 x + 1601$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
5.12.9.2$x^{12} + 12 x^{10} + 12 x^{9} + 69 x^{8} + 108 x^{7} + 42 x^{6} - 396 x^{5} + 840 x^{4} + 252 x^{3} + 1476 x^{2} + 684 x + 1601$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
5.12.9.2$x^{12} + 12 x^{10} + 12 x^{9} + 69 x^{8} + 108 x^{7} + 42 x^{6} - 396 x^{5} + 840 x^{4} + 252 x^{3} + 1476 x^{2} + 684 x + 1601$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.4.2t1.a.a$1$ $ 2^{2}$ \(\Q(\sqrt{-1}) \) $C_2$ (as 2T1) $1$ $-1$
1.20.2t1.a.a$1$ $ 2^{2} \cdot 5 $ \(\Q(\sqrt{-5}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
* 1.9.3t1.a.a$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
1.180.6t1.b.a$1$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 6.0.52488000.1 $C_6$ (as 6T1) $0$ $-1$
1.36.6t1.b.a$1$ $ 2^{2} \cdot 3^{2}$ 6.0.419904.1 $C_6$ (as 6T1) $0$ $-1$
1.180.6t1.b.b$1$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 6.0.52488000.1 $C_6$ (as 6T1) $0$ $-1$
* 1.45.6t1.a.a$1$ $ 3^{2} \cdot 5 $ 6.6.820125.1 $C_6$ (as 6T1) $0$ $1$
* 1.45.6t1.a.b$1$ $ 3^{2} \cdot 5 $ 6.6.820125.1 $C_6$ (as 6T1) $0$ $1$
1.36.6t1.b.b$1$ $ 2^{2} \cdot 3^{2}$ 6.0.419904.1 $C_6$ (as 6T1) $0$ $-1$
* 1.9.3t1.a.b$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
1.20.4t1.a.a$1$ $ 2^{2} \cdot 5 $ \(\Q(\zeta_{20})^+\) $C_4$ (as 4T1) $0$ $1$
* 1.5.4t1.a.a$1$ $ 5 $ \(\Q(\zeta_{5})\) $C_4$ (as 4T1) $0$ $-1$
* 1.5.4t1.a.b$1$ $ 5 $ \(\Q(\zeta_{5})\) $C_4$ (as 4T1) $0$ $-1$
1.20.4t1.a.b$1$ $ 2^{2} \cdot 5 $ \(\Q(\zeta_{20})^+\) $C_4$ (as 4T1) $0$ $1$
1.180.12t1.b.a$1$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 12.12.344373768000000000.1 $C_{12}$ (as 12T1) $0$ $1$
* 1.45.12t1.a.a$1$ $ 3^{2} \cdot 5 $ 12.0.84075626953125.1 $C_{12}$ (as 12T1) $0$ $-1$
1.180.12t1.b.b$1$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 12.12.344373768000000000.1 $C_{12}$ (as 12T1) $0$ $1$
* 1.45.12t1.a.b$1$ $ 3^{2} \cdot 5 $ 12.0.84075626953125.1 $C_{12}$ (as 12T1) $0$ $-1$
* 1.45.12t1.a.c$1$ $ 3^{2} \cdot 5 $ 12.0.84075626953125.1 $C_{12}$ (as 12T1) $0$ $-1$
* 1.45.12t1.a.d$1$ $ 3^{2} \cdot 5 $ 12.0.84075626953125.1 $C_{12}$ (as 12T1) $0$ $-1$
1.180.12t1.b.c$1$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 12.12.344373768000000000.1 $C_{12}$ (as 12T1) $0$ $1$
1.180.12t1.b.d$1$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 12.12.344373768000000000.1 $C_{12}$ (as 12T1) $0$ $1$
* 2.1620.3t2.b.a$2$ $ 2^{2} \cdot 3^{4} \cdot 5 $ 3.1.1620.1 $S_3$ (as 3T2) $1$ $0$
* 2.1620.6t3.b.a$2$ $ 2^{2} \cdot 3^{4} \cdot 5 $ 6.0.10497600.1 $D_{6}$ (as 6T3) $1$ $0$
* 2.180.12t18.a.a$2$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 12.0.419904000000.1 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.180.6t5.b.a$2$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 6.0.648000.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.180.12t18.a.b$2$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 12.0.419904000000.1 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.180.6t5.b.b$2$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 6.0.648000.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.8100.12t11.c.a$2$ $ 2^{2} \cdot 3^{4} \cdot 5^{2}$ 12.0.21523360500000000.3 $S_3 \times C_4$ (as 12T11) $0$ $0$
* 2.8100.12t11.c.b$2$ $ 2^{2} \cdot 3^{4} \cdot 5^{2}$ 12.0.21523360500000000.3 $S_3 \times C_4$ (as 12T11) $0$ $0$
* 2.900.24t65.a.a$2$ $ 2^{2} \cdot 3^{2} \cdot 5^{2}$ 36.0.9970805384609063732920125000000000000000000000000.1 $S_3\times C_{12}$ (as 36T27) $0$ $0$
* 2.900.24t65.a.b$2$ $ 2^{2} \cdot 3^{2} \cdot 5^{2}$ 36.0.9970805384609063732920125000000000000000000000000.1 $S_3\times C_{12}$ (as 36T27) $0$ $0$
* 2.900.24t65.a.c$2$ $ 2^{2} \cdot 3^{2} \cdot 5^{2}$ 36.0.9970805384609063732920125000000000000000000000000.1 $S_3\times C_{12}$ (as 36T27) $0$ $0$
* 2.900.24t65.a.d$2$ $ 2^{2} \cdot 3^{2} \cdot 5^{2}$ 36.0.9970805384609063732920125000000000000000000000000.1 $S_3\times C_{12}$ (as 36T27) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.