Properties

Label 36.36.650...125.1
Degree $36$
Signature $[36, 0]$
Discriminant $6.503\times 10^{61}$
Root discriminant \(52.12\)
Ramified primes $3,5$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{36}$ (as 36T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 36*x^34 + 594*x^32 - 5952*x^30 + 40455*x^28 - x^27 - 197316*x^26 + 27*x^25 + 712530*x^24 - 324*x^23 - 1937520*x^22 + 2277*x^21 + 3996135*x^20 - 10395*x^19 - 6249100*x^18 + 32319*x^17 + 7354710*x^16 - 69768*x^15 - 6418656*x^14 + 104652*x^13 + 4056234*x^12 - 107406*x^11 - 1790712*x^10 + 72931*x^9 + 523260*x^8 - 30897*x^7 - 93024*x^6 + 7398*x^5 + 8721*x^4 - 849*x^3 - 324*x^2 + 36*x + 1)
 
gp: K = bnfinit(y^36 - 36*y^34 + 594*y^32 - 5952*y^30 + 40455*y^28 - y^27 - 197316*y^26 + 27*y^25 + 712530*y^24 - 324*y^23 - 1937520*y^22 + 2277*y^21 + 3996135*y^20 - 10395*y^19 - 6249100*y^18 + 32319*y^17 + 7354710*y^16 - 69768*y^15 - 6418656*y^14 + 104652*y^13 + 4056234*y^12 - 107406*y^11 - 1790712*y^10 + 72931*y^9 + 523260*y^8 - 30897*y^7 - 93024*y^6 + 7398*y^5 + 8721*y^4 - 849*y^3 - 324*y^2 + 36*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - 36*x^34 + 594*x^32 - 5952*x^30 + 40455*x^28 - x^27 - 197316*x^26 + 27*x^25 + 712530*x^24 - 324*x^23 - 1937520*x^22 + 2277*x^21 + 3996135*x^20 - 10395*x^19 - 6249100*x^18 + 32319*x^17 + 7354710*x^16 - 69768*x^15 - 6418656*x^14 + 104652*x^13 + 4056234*x^12 - 107406*x^11 - 1790712*x^10 + 72931*x^9 + 523260*x^8 - 30897*x^7 - 93024*x^6 + 7398*x^5 + 8721*x^4 - 849*x^3 - 324*x^2 + 36*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 36*x^34 + 594*x^32 - 5952*x^30 + 40455*x^28 - x^27 - 197316*x^26 + 27*x^25 + 712530*x^24 - 324*x^23 - 1937520*x^22 + 2277*x^21 + 3996135*x^20 - 10395*x^19 - 6249100*x^18 + 32319*x^17 + 7354710*x^16 - 69768*x^15 - 6418656*x^14 + 104652*x^13 + 4056234*x^12 - 107406*x^11 - 1790712*x^10 + 72931*x^9 + 523260*x^8 - 30897*x^7 - 93024*x^6 + 7398*x^5 + 8721*x^4 - 849*x^3 - 324*x^2 + 36*x + 1)
 

\( x^{36} - 36 x^{34} + 594 x^{32} - 5952 x^{30} + 40455 x^{28} - x^{27} - 197316 x^{26} + 27 x^{25} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[36, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(65028396011052373244549315269863064140390224754810333251953125\) \(\medspace = 3^{90}\cdot 5^{27}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(52.12\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{5/2}5^{3/4}\approx 52.123148337972104$
Ramified primes:   \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(135=3^{3}\cdot 5\)
Dirichlet character group:    $\lbrace$$\chi_{135}(128,·)$, $\chi_{135}(1,·)$, $\chi_{135}(2,·)$, $\chi_{135}(4,·)$, $\chi_{135}(8,·)$, $\chi_{135}(16,·)$, $\chi_{135}(17,·)$, $\chi_{135}(19,·)$, $\chi_{135}(23,·)$, $\chi_{135}(31,·)$, $\chi_{135}(32,·)$, $\chi_{135}(34,·)$, $\chi_{135}(38,·)$, $\chi_{135}(46,·)$, $\chi_{135}(47,·)$, $\chi_{135}(49,·)$, $\chi_{135}(53,·)$, $\chi_{135}(61,·)$, $\chi_{135}(62,·)$, $\chi_{135}(64,·)$, $\chi_{135}(68,·)$, $\chi_{135}(76,·)$, $\chi_{135}(77,·)$, $\chi_{135}(79,·)$, $\chi_{135}(83,·)$, $\chi_{135}(91,·)$, $\chi_{135}(92,·)$, $\chi_{135}(94,·)$, $\chi_{135}(98,·)$, $\chi_{135}(106,·)$, $\chi_{135}(107,·)$, $\chi_{135}(109,·)$, $\chi_{135}(113,·)$, $\chi_{135}(121,·)$, $\chi_{135}(122,·)$, $\chi_{135}(124,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $35$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{27}-27a^{25}+324a^{23}-2277a^{21}+10395a^{19}-32319a^{17}+69768a^{15}-104652a^{13}+107406a^{11}-72930a^{9}+30888a^{7}-7371a^{5}+819a^{3}-27a$, $a^{30}-30a^{28}+405a^{26}-3250a^{24}+17250a^{22}-63756a^{20}+168245a^{18}-319770a^{16}+436050a^{14}-419900a^{12}+277134a^{10}-119340a^{8}+30940a^{6}-4200a^{4}+225a^{2}-2$, $a^{15}-15a^{13}+90a^{11}-275a^{9}+450a^{7}-378a^{5}+140a^{3}-15a$, $a^{33}-33a^{31}-a^{30}+495a^{29}+30a^{28}-4467a^{27}-405a^{26}+27054a^{25}+3249a^{24}-116154a^{23}-17226a^{22}+364067a^{21}+63504a^{20}-845295a^{19}-166725a^{18}+1459998a^{17}+313956a^{16}-1867586a^{15}-421362a^{14}+1746138a^{13}+395149a^{12}-1165554a^{11}-249690a^{10}+534820a^{9}+100089a^{8}-158796a^{7}-23044a^{6}+27567a^{5}+2589a^{4}-2316a^{3}-117a^{2}+63a+1$, $a^{33}-33a^{31}-a^{30}+495a^{29}+30a^{28}-4466a^{27}-405a^{26}+27027a^{25}+3249a^{24}-115830a^{23}-17226a^{22}+361790a^{21}+63504a^{20}-834900a^{19}-166725a^{18}+1427679a^{17}+313956a^{16}-1797818a^{15}-421362a^{14}+1641486a^{13}+395149a^{12}-1058148a^{11}-249690a^{10}+461890a^{9}+100089a^{8}-127908a^{7}-23043a^{6}+20196a^{5}+2583a^{4}-1497a^{3}-108a^{2}+36a$, $a^{33}-33a^{31}-a^{30}+495a^{29}+30a^{28}-4466a^{27}-405a^{26}+27027a^{25}+3250a^{24}-115830a^{23}-17250a^{22}+361791a^{21}+63756a^{20}-834921a^{19}-168245a^{18}+1427868a^{17}+319770a^{16}-1798771a^{15}-436050a^{14}+1644441a^{13}+419900a^{12}-1063971a^{11}-277134a^{10}+469172a^{9}+119340a^{8}-133506a^{7}-30939a^{6}+22653a^{5}+4194a^{4}-2022a^{3}-216a^{2}+72a+1$, $a^{33}-33a^{31}+495a^{29}-4466a^{27}+27027a^{25}-115830a^{23}+361790a^{21}-834900a^{19}+1427679a^{17}-1797818a^{15}+1641486a^{13}-1058148a^{11}+461890a^{9}-127908a^{7}+20196a^{5}-1496a^{3}+33a$, $a^{12}-12a^{10}+54a^{8}-112a^{6}+105a^{4}-36a^{2}+2$, $a^{33}-33a^{31}-a^{30}+495a^{29}+30a^{28}-4466a^{27}-405a^{26}+27027a^{25}+3250a^{24}-115830a^{23}-17250a^{22}+361791a^{21}+63756a^{20}-834921a^{19}-168245a^{18}+1427868a^{17}+319770a^{16}-1798771a^{15}-436050a^{14}+1644441a^{13}+419900a^{12}-1063971a^{11}-277134a^{10}+469172a^{9}+119340a^{8}-133506a^{7}-30939a^{6}+22653a^{5}+4194a^{4}-2021a^{3}-216a^{2}+69a$, $a^{27}-27a^{25}+324a^{23}-2277a^{21}+10395a^{19}-32319a^{17}+69768a^{15}-104652a^{13}+107406a^{11}-72931a^{9}+30897a^{7}-7398a^{5}+849a^{3}-36a$, $a^{33}-33a^{31}+495a^{29}-4466a^{27}+27027a^{25}-115830a^{23}+361790a^{21}-834900a^{19}+1427679a^{17}-1797818a^{15}+1641486a^{13}+a^{12}-1058148a^{11}-12a^{10}+461890a^{9}+54a^{8}-127908a^{7}-112a^{6}+20196a^{5}+105a^{4}-1496a^{3}-36a^{2}+33a+2$, $a^{32}-32a^{30}+464a^{28}-4032a^{26}+23400a^{24}-95680a^{22}+283360a^{20}-615296a^{18}+980628a^{16}-1136960a^{14}+940576a^{12}-537472a^{10}+201552a^{8}-45696a^{6}+5440a^{4}-256a^{2}+3$, $a^{26}-26a^{24}+299a^{22}-2002a^{20}+a^{19}+8645a^{18}-19a^{17}-25194a^{16}+152a^{15}+50388a^{14}-665a^{13}-68952a^{12}+1729a^{11}+63206a^{10}-2717a^{9}-37180a^{8}+2508a^{7}+13013a^{6}-1254a^{5}-2366a^{4}+285a^{3}+169a^{2}-19a-3$, $a^{26}-26a^{24}+299a^{22}-2002a^{20}+8645a^{18}-25194a^{16}+50388a^{14}-68952a^{12}+63206a^{10}-37180a^{8}+13013a^{6}-2366a^{4}+169a^{2}-1$, $a^{7}-7a^{5}+14a^{3}-7a+1$, $a^{14}-14a^{12}+77a^{10}-210a^{8}+294a^{6}-196a^{4}+49a^{2}-1$, $a^{31}-31a^{29}+434a^{27}-3627a^{25}+20150a^{23}-78430a^{21}+219604a^{19}-447051a^{17}+660858a^{15}+a^{14}-700910a^{13}-14a^{12}+520676a^{11}+77a^{10}-260338a^{9}-210a^{8}+82212a^{7}+294a^{6}-14756a^{5}-196a^{4}+1240a^{3}+49a^{2}-31a-3$, $a^{17}-17a^{15}+119a^{13}-442a^{11}+935a^{9}-1122a^{7}+714a^{5}-204a^{3}+17a+1$, $a^{28}-28a^{26}+350a^{24}-2576a^{22}+12397a^{20}-40964a^{18}+a^{17}+94962a^{16}-17a^{15}-155040a^{14}+119a^{13}+176358a^{12}-442a^{11}-136136a^{10}+935a^{9}+68068a^{8}-1122a^{7}-20384a^{6}+714a^{5}+3185a^{4}-204a^{3}-196a^{2}+17a+1$, $a^{16}-16a^{14}+104a^{12}-352a^{10}+660a^{8}-672a^{6}+336a^{4}-64a^{2}+3$, $a^{29}-29a^{27}+377a^{25}-2900a^{23}+14674a^{21}-51359a^{19}+127281a^{17}+a^{16}-224808a^{15}-16a^{14}+281010a^{13}+104a^{12}-243542a^{11}-352a^{10}+140998a^{9}+660a^{8}-51272a^{7}-672a^{6}+10556a^{5}+336a^{4}-1015a^{3}-64a^{2}+29a+1$, $a^{35}-35a^{33}+560a^{31}-5425a^{29}-a^{28}+35525a^{27}+27a^{26}-166257a^{25}-324a^{24}+573300a^{23}+2277a^{22}-1480050a^{21}-10395a^{20}+2877875a^{19}+32319a^{18}-4206125a^{17}-69768a^{16}+4576264a^{15}+104652a^{14}-3640210a^{13}-107406a^{12}+2057510a^{11}+72931a^{10}-791350a^{9}-30897a^{8}+193800a^{7}+7398a^{6}-27132a^{5}-849a^{4}+1785a^{3}+36a^{2}-36a-1$, $a^{35}-35a^{33}+560a^{31}-5425a^{29}-a^{28}+35525a^{27}+27a^{26}-166257a^{25}-324a^{24}+573300a^{23}+2277a^{22}-1480050a^{21}-10395a^{20}+2877875a^{19}+32319a^{18}-4206125a^{17}-69768a^{16}+4576264a^{15}+104652a^{14}-3640210a^{13}-107406a^{12}+2057510a^{11}+72931a^{10}-791350a^{9}-30898a^{8}+193800a^{7}+7406a^{6}-27132a^{5}-869a^{4}+1785a^{3}+52a^{2}-36a-1$, $a^{32}-a^{31}-32a^{30}+31a^{29}+464a^{28}-434a^{27}-4032a^{26}+3627a^{25}+23400a^{24}-20150a^{23}-95679a^{22}+78430a^{21}+283338a^{20}-219604a^{19}-615087a^{18}+447051a^{17}+979506a^{16}-660858a^{15}-1133221a^{14}+700910a^{13}+932582a^{12}-520676a^{11}-526538a^{10}+260338a^{9}+192324a^{8}-82212a^{7}-41271a^{6}+14757a^{5}+4426a^{4}-1245a^{3}-184a^{2}+36a+1$, $a^{4}-4a^{2}+3$, $a^{35}-35a^{33}+560a^{31}-5425a^{29}-a^{28}+35525a^{27}+28a^{26}-166257a^{25}-350a^{24}+573300a^{23}+2576a^{22}-1480050a^{21}-12397a^{20}+2877876a^{19}+40964a^{18}-4206145a^{17}-94962a^{16}+4576433a^{15}+155040a^{14}-3640994a^{13}-176358a^{12}+2059681a^{11}+136136a^{10}-795002a^{9}-68067a^{8}+197430a^{7}+20376a^{6}-29100a^{5}-3165a^{4}+2274a^{3}+180a^{2}-72a$, $a^{35}-35a^{33}+560a^{31}-5425a^{29}-a^{28}+35525a^{27}+28a^{26}-166257a^{25}-350a^{24}+573300a^{23}+2576a^{22}-1480050a^{21}-12397a^{20}+2877876a^{19}+40964a^{18}-4206145a^{17}-94962a^{16}+4576433a^{15}+155040a^{14}-3640994a^{13}-176358a^{12}+2059681a^{11}+136136a^{10}-795002a^{9}-68067a^{8}+197430a^{7}+20376a^{6}-29100a^{5}-3165a^{4}+2274a^{3}+180a^{2}-72a+1$, $a^{35}-35a^{33}+560a^{31}-5425a^{29}-a^{28}+35525a^{27}+28a^{26}-166257a^{25}-350a^{24}+573300a^{23}+2576a^{22}-1480050a^{21}-12397a^{20}+2877876a^{19}+40964a^{18}-4206145a^{17}-94962a^{16}+4576433a^{15}+155040a^{14}-3640994a^{13}-176358a^{12}+2059681a^{11}+136136a^{10}-795002a^{9}-68067a^{8}+197430a^{7}+20376a^{6}-29100a^{5}-3165a^{4}+2274a^{3}+180a^{2}-71a-1$, $a^{34}-34a^{32}+527a^{30}-4930a^{28}+31059a^{26}-139230a^{24}+457470a^{22}-1118260a^{20}+2042975a^{18}-2778446a^{16}+2778446a^{14}-1998724a^{12}+999362a^{10}-329460a^{8}+65892a^{6}-6936a^{4}+289a^{2}-1$, $a^{22}-22a^{20}+209a^{18}-1122a^{16}+3740a^{14}-8008a^{12}+11011a^{10}-9438a^{8}+4719a^{6}-1210a^{4}+121a^{2}-1$, $a^{31}-31a^{29}+434a^{27}-3627a^{25}+20150a^{23}-78430a^{21}+219604a^{19}-447051a^{17}+660858a^{15}-700910a^{13}+520676a^{11}-260338a^{9}+82212a^{7}-14756a^{5}+1240a^{3}-31a$, $a^{2}-1$, $a^{35}-35a^{33}+560a^{31}-5425a^{29}+35525a^{27}-166257a^{25}+573300a^{23}-1480050a^{21}+2877875a^{19}-4206125a^{17}+4576264a^{15}-3640210a^{13}+2057510a^{11}+a^{10}-791350a^{9}-10a^{8}+193800a^{7}+35a^{6}-27132a^{5}-50a^{4}+1785a^{3}+25a^{2}-35a-2$, $a^{32}-a^{31}-32a^{30}+31a^{29}+464a^{28}-435a^{27}-4032a^{26}+3654a^{25}+23400a^{24}-20475a^{23}-95680a^{22}+80730a^{21}+283360a^{20}-230229a^{19}-615296a^{18}+480681a^{17}+980628a^{16}-735318a^{15}-1136960a^{14}+816511a^{13}+940576a^{12}-644839a^{11}-537472a^{10}+349778a^{9}+201552a^{8}-123123a^{7}-45696a^{6}+25598a^{5}+5439a^{4}-2656a^{3}-252a^{2}+94a$, $a^{23}-23a^{21}+230a^{19}-1311a^{17}+4692a^{15}-10948a^{13}+16744a^{11}-16445a^{9}+9867a^{7}-3289a^{5}+506a^{3}-23a+1$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 31157843880432600000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{36}\cdot(2\pi)^{0}\cdot 31157843880432600000 \cdot 1}{2\cdot\sqrt{65028396011052373244549315269863064140390224754810333251953125}}\cr\approx \mathstrut & 0.132759535499642 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - 36*x^34 + 594*x^32 - 5952*x^30 + 40455*x^28 - x^27 - 197316*x^26 + 27*x^25 + 712530*x^24 - 324*x^23 - 1937520*x^22 + 2277*x^21 + 3996135*x^20 - 10395*x^19 - 6249100*x^18 + 32319*x^17 + 7354710*x^16 - 69768*x^15 - 6418656*x^14 + 104652*x^13 + 4056234*x^12 - 107406*x^11 - 1790712*x^10 + 72931*x^9 + 523260*x^8 - 30897*x^7 - 93024*x^6 + 7398*x^5 + 8721*x^4 - 849*x^3 - 324*x^2 + 36*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - 36*x^34 + 594*x^32 - 5952*x^30 + 40455*x^28 - x^27 - 197316*x^26 + 27*x^25 + 712530*x^24 - 324*x^23 - 1937520*x^22 + 2277*x^21 + 3996135*x^20 - 10395*x^19 - 6249100*x^18 + 32319*x^17 + 7354710*x^16 - 69768*x^15 - 6418656*x^14 + 104652*x^13 + 4056234*x^12 - 107406*x^11 - 1790712*x^10 + 72931*x^9 + 523260*x^8 - 30897*x^7 - 93024*x^6 + 7398*x^5 + 8721*x^4 - 849*x^3 - 324*x^2 + 36*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - 36*x^34 + 594*x^32 - 5952*x^30 + 40455*x^28 - x^27 - 197316*x^26 + 27*x^25 + 712530*x^24 - 324*x^23 - 1937520*x^22 + 2277*x^21 + 3996135*x^20 - 10395*x^19 - 6249100*x^18 + 32319*x^17 + 7354710*x^16 - 69768*x^15 - 6418656*x^14 + 104652*x^13 + 4056234*x^12 - 107406*x^11 - 1790712*x^10 + 72931*x^9 + 523260*x^8 - 30897*x^7 - 93024*x^6 + 7398*x^5 + 8721*x^4 - 849*x^3 - 324*x^2 + 36*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 36*x^34 + 594*x^32 - 5952*x^30 + 40455*x^28 - x^27 - 197316*x^26 + 27*x^25 + 712530*x^24 - 324*x^23 - 1937520*x^22 + 2277*x^21 + 3996135*x^20 - 10395*x^19 - 6249100*x^18 + 32319*x^17 + 7354710*x^16 - 69768*x^15 - 6418656*x^14 + 104652*x^13 + 4056234*x^12 - 107406*x^11 - 1790712*x^10 + 72931*x^9 + 523260*x^8 - 30897*x^7 - 93024*x^6 + 7398*x^5 + 8721*x^4 - 849*x^3 - 324*x^2 + 36*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{36}$ (as 36T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 36
The 36 conjugacy class representatives for $C_{36}$
Character table for $C_{36}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{15})^+\), 6.6.820125.1, \(\Q(\zeta_{27})^+\), \(\Q(\zeta_{45})^+\), 18.18.1923380668327365689220703125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $36$ R R $36$ $18^{2}$ $36$ ${\href{/padicField/17.12.0.1}{12} }^{3}$ ${\href{/padicField/19.6.0.1}{6} }^{6}$ $36$ ${\href{/padicField/29.9.0.1}{9} }^{4}$ ${\href{/padicField/31.9.0.1}{9} }^{4}$ ${\href{/padicField/37.12.0.1}{12} }^{3}$ $18^{2}$ $36$ $36$ ${\href{/padicField/53.4.0.1}{4} }^{9}$ ${\href{/padicField/59.9.0.1}{9} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $36$$18$$2$$90$
\(5\) Copy content Toggle raw display Deg $36$$4$$9$$27$