Properties

Label 38.0.477...875.1
Degree $38$
Signature $[0, 19]$
Discriminant $-4.772\times 10^{97}$
Root discriminant \(371.96\)
Ramified primes $5,191$
Class number not computed
Class group not computed
Galois group $C_{38}$ (as 38T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^38 - x^37 + 194*x^36 - 202*x^35 + 16279*x^34 - 7863*x^33 + 772861*x^32 + 402596*x^31 + 23045822*x^30 + 40384193*x^29 + 479536671*x^28 + 1351816180*x^27 + 7928555878*x^26 + 25902608554*x^25 + 111456458601*x^24 + 341385389946*x^23 + 1297163210108*x^22 + 3493633650369*x^21 + 12095301942774*x^20 + 29754895552994*x^19 + 90602135732080*x^18 + 209292172135889*x^17 + 578704163180687*x^16 + 1150796400064466*x^15 + 3249066298571457*x^14 + 4892053641982278*x^13 + 14078439508345248*x^12 + 18448183569455711*x^11 + 46083907583218775*x^10 + 65495333977938485*x^9 + 111449247373051429*x^8 + 177739871270855783*x^7 + 253288222342260757*x^6 + 334042708854918147*x^5 + 456173375797126253*x^4 + 247500381632980217*x^3 + 331215018154218380*x^2 + 303420818935344453*x + 79580728329881359)
 
gp: K = bnfinit(y^38 - y^37 + 194*y^36 - 202*y^35 + 16279*y^34 - 7863*y^33 + 772861*y^32 + 402596*y^31 + 23045822*y^30 + 40384193*y^29 + 479536671*y^28 + 1351816180*y^27 + 7928555878*y^26 + 25902608554*y^25 + 111456458601*y^24 + 341385389946*y^23 + 1297163210108*y^22 + 3493633650369*y^21 + 12095301942774*y^20 + 29754895552994*y^19 + 90602135732080*y^18 + 209292172135889*y^17 + 578704163180687*y^16 + 1150796400064466*y^15 + 3249066298571457*y^14 + 4892053641982278*y^13 + 14078439508345248*y^12 + 18448183569455711*y^11 + 46083907583218775*y^10 + 65495333977938485*y^9 + 111449247373051429*y^8 + 177739871270855783*y^7 + 253288222342260757*y^6 + 334042708854918147*y^5 + 456173375797126253*y^4 + 247500381632980217*y^3 + 331215018154218380*y^2 + 303420818935344453*y + 79580728329881359, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^38 - x^37 + 194*x^36 - 202*x^35 + 16279*x^34 - 7863*x^33 + 772861*x^32 + 402596*x^31 + 23045822*x^30 + 40384193*x^29 + 479536671*x^28 + 1351816180*x^27 + 7928555878*x^26 + 25902608554*x^25 + 111456458601*x^24 + 341385389946*x^23 + 1297163210108*x^22 + 3493633650369*x^21 + 12095301942774*x^20 + 29754895552994*x^19 + 90602135732080*x^18 + 209292172135889*x^17 + 578704163180687*x^16 + 1150796400064466*x^15 + 3249066298571457*x^14 + 4892053641982278*x^13 + 14078439508345248*x^12 + 18448183569455711*x^11 + 46083907583218775*x^10 + 65495333977938485*x^9 + 111449247373051429*x^8 + 177739871270855783*x^7 + 253288222342260757*x^6 + 334042708854918147*x^5 + 456173375797126253*x^4 + 247500381632980217*x^3 + 331215018154218380*x^2 + 303420818935344453*x + 79580728329881359);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^38 - x^37 + 194*x^36 - 202*x^35 + 16279*x^34 - 7863*x^33 + 772861*x^32 + 402596*x^31 + 23045822*x^30 + 40384193*x^29 + 479536671*x^28 + 1351816180*x^27 + 7928555878*x^26 + 25902608554*x^25 + 111456458601*x^24 + 341385389946*x^23 + 1297163210108*x^22 + 3493633650369*x^21 + 12095301942774*x^20 + 29754895552994*x^19 + 90602135732080*x^18 + 209292172135889*x^17 + 578704163180687*x^16 + 1150796400064466*x^15 + 3249066298571457*x^14 + 4892053641982278*x^13 + 14078439508345248*x^12 + 18448183569455711*x^11 + 46083907583218775*x^10 + 65495333977938485*x^9 + 111449247373051429*x^8 + 177739871270855783*x^7 + 253288222342260757*x^6 + 334042708854918147*x^5 + 456173375797126253*x^4 + 247500381632980217*x^3 + 331215018154218380*x^2 + 303420818935344453*x + 79580728329881359)
 

\( x^{38} - x^{37} + 194 x^{36} - 202 x^{35} + 16279 x^{34} - 7863 x^{33} + 772861 x^{32} + \cdots + 79\!\cdots\!59 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $38$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 19]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-477\!\cdots\!875\) \(\medspace = -\,5^{19}\cdot 191^{37}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(371.96\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}191^{37/38}\approx 371.95566329267626$
Ramified primes:   \(5\), \(191\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-955}) \)
$\card{ \Gal(K/\Q) }$:  $38$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(955=5\cdot 191\)
Dirichlet character group:    $\lbrace$$\chi_{955}(1,·)$, $\chi_{955}(6,·)$, $\chi_{955}(136,·)$, $\chi_{955}(139,·)$, $\chi_{955}(14,·)$, $\chi_{955}(919,·)$, $\chi_{955}(536,·)$, $\chi_{955}(796,·)$, $\chi_{955}(159,·)$, $\chi_{955}(419,·)$, $\chi_{955}(36,·)$, $\chi_{955}(941,·)$, $\chi_{955}(816,·)$, $\chi_{955}(819,·)$, $\chi_{955}(949,·)$, $\chi_{955}(954,·)$, $\chi_{955}(316,·)$, $\chi_{955}(834,·)$, $\chi_{955}(451,·)$, $\chi_{955}(196,·)$, $\chi_{955}(584,·)$, $\chi_{955}(84,·)$, $\chi_{955}(341,·)$, $\chi_{955}(726,·)$, $\chi_{955}(216,·)$, $\chi_{955}(604,·)$, $\chi_{955}(221,·)$, $\chi_{955}(734,·)$, $\chi_{955}(351,·)$, $\chi_{955}(739,·)$, $\chi_{955}(229,·)$, $\chi_{955}(614,·)$, $\chi_{955}(871,·)$, $\chi_{955}(371,·)$, $\chi_{955}(759,·)$, $\chi_{955}(504,·)$, $\chi_{955}(121,·)$, $\chi_{955}(639,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{262144}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7}a^{7}-\frac{1}{7}a$, $\frac{1}{7}a^{8}-\frac{1}{7}a^{2}$, $\frac{1}{7}a^{9}-\frac{1}{7}a^{3}$, $\frac{1}{7}a^{10}-\frac{1}{7}a^{4}$, $\frac{1}{7}a^{11}-\frac{1}{7}a^{5}$, $\frac{1}{7}a^{12}-\frac{1}{7}a^{6}$, $\frac{1}{7}a^{13}-\frac{1}{7}a$, $\frac{1}{49}a^{14}-\frac{2}{49}a^{8}+\frac{1}{49}a^{2}$, $\frac{1}{49}a^{15}-\frac{2}{49}a^{9}+\frac{1}{49}a^{3}$, $\frac{1}{49}a^{16}-\frac{2}{49}a^{10}+\frac{1}{49}a^{4}$, $\frac{1}{49}a^{17}-\frac{2}{49}a^{11}+\frac{1}{49}a^{5}$, $\frac{1}{49}a^{18}-\frac{2}{49}a^{12}+\frac{1}{49}a^{6}$, $\frac{1}{49}a^{19}-\frac{2}{49}a^{13}+\frac{1}{49}a^{7}$, $\frac{1}{49}a^{20}-\frac{3}{49}a^{8}+\frac{2}{49}a^{2}$, $\frac{1}{343}a^{21}-\frac{3}{343}a^{15}+\frac{3}{343}a^{9}-\frac{1}{343}a^{3}$, $\frac{1}{343}a^{22}-\frac{3}{343}a^{16}+\frac{3}{343}a^{10}-\frac{1}{343}a^{4}$, $\frac{1}{343}a^{23}-\frac{3}{343}a^{17}+\frac{3}{343}a^{11}-\frac{1}{343}a^{5}$, $\frac{1}{343}a^{24}-\frac{3}{343}a^{18}+\frac{3}{343}a^{12}-\frac{1}{343}a^{6}$, $\frac{1}{343}a^{25}-\frac{3}{343}a^{19}+\frac{3}{343}a^{13}-\frac{1}{343}a^{7}$, $\frac{1}{2401}a^{26}-\frac{1}{2401}a^{25}+\frac{3}{2401}a^{24}+\frac{2}{2401}a^{23}-\frac{3}{2401}a^{22}-\frac{24}{2401}a^{20}-\frac{18}{2401}a^{19}+\frac{19}{2401}a^{18}+\frac{22}{2401}a^{17}-\frac{12}{2401}a^{16}-\frac{3}{343}a^{15}-\frac{4}{2401}a^{14}-\frac{157}{2401}a^{13}-\frac{96}{2401}a^{12}-\frac{50}{2401}a^{11}-\frac{65}{2401}a^{10}+\frac{20}{343}a^{9}+\frac{125}{2401}a^{8}-\frac{167}{2401}a^{7}-\frac{269}{2401}a^{6}-\frac{317}{2401}a^{5}-\frac{263}{2401}a^{4}-\frac{66}{343}a^{3}-\frac{9}{49}a^{2}$, $\frac{1}{2401}a^{27}+\frac{2}{2401}a^{25}-\frac{2}{2401}a^{24}-\frac{1}{2401}a^{23}-\frac{3}{2401}a^{22}-\frac{3}{2401}a^{21}+\frac{1}{343}a^{20}+\frac{1}{2401}a^{19}+\frac{13}{2401}a^{18}+\frac{10}{2401}a^{17}+\frac{16}{2401}a^{16}+\frac{10}{2401}a^{15}-\frac{2}{343}a^{14}+\frac{90}{2401}a^{13}-\frac{69}{2401}a^{12}-\frac{115}{2401}a^{11}-\frac{23}{2401}a^{10}+\frac{132}{2401}a^{9}-\frac{20}{343}a^{8}-\frac{93}{2401}a^{7}-\frac{628}{2401}a^{6}-\frac{580}{2401}a^{5}-\frac{676}{2401}a^{4}-\frac{118}{343}a^{3}-\frac{11}{49}a^{2}-\frac{2}{7}a$, $\frac{1}{2401}a^{28}+\frac{3}{2401}a^{22}-\frac{15}{2401}a^{16}+\frac{17}{2401}a^{10}-\frac{6}{2401}a^{4}$, $\frac{1}{2401}a^{29}+\frac{3}{2401}a^{23}-\frac{15}{2401}a^{17}+\frac{17}{2401}a^{11}-\frac{6}{2401}a^{5}$, $\frac{1}{16807}a^{30}+\frac{3}{16807}a^{29}+\frac{3}{2401}a^{25}+\frac{17}{16807}a^{24}+\frac{2}{16807}a^{23}-\frac{3}{2401}a^{22}-\frac{3}{343}a^{20}+\frac{5}{2401}a^{19}-\frac{8}{16807}a^{18}+\frac{25}{16807}a^{17}-\frac{19}{2401}a^{16}-\frac{3}{343}a^{15}-\frac{1}{343}a^{14}-\frac{117}{2401}a^{13}+\frac{990}{16807}a^{12}+\frac{275}{16807}a^{11}+\frac{145}{2401}a^{10}-\frac{8}{343}a^{9}-\frac{24}{343}a^{8}+\frac{109}{2401}a^{7}-\frac{5802}{16807}a^{6}-\frac{305}{16807}a^{5}-\frac{1152}{2401}a^{4}+\frac{109}{343}a^{3}-\frac{3}{49}a^{2}$, $\frac{1}{1831963}a^{31}-\frac{34}{1831963}a^{30}-\frac{307}{1831963}a^{29}+\frac{41}{261709}a^{28}+\frac{15}{261709}a^{27}-\frac{6}{261709}a^{26}-\frac{977}{1831963}a^{25}-\frac{879}{1831963}a^{24}-\frac{718}{1831963}a^{23}-\frac{253}{261709}a^{22}-\frac{248}{261709}a^{21}-\frac{73}{261709}a^{20}-\frac{10599}{1831963}a^{19}-\frac{6126}{1831963}a^{18}+\frac{5074}{1831963}a^{17}+\frac{156}{261709}a^{16}+\frac{2096}{261709}a^{15}-\frac{2286}{261709}a^{14}-\frac{90094}{1831963}a^{13}-\frac{46372}{1831963}a^{12}+\frac{105395}{1831963}a^{11}+\frac{528}{261709}a^{10}+\frac{5312}{261709}a^{9}+\frac{16967}{261709}a^{8}+\frac{53649}{1831963}a^{7}+\frac{415962}{1831963}a^{6}-\frac{116647}{1831963}a^{5}+\frac{62297}{261709}a^{4}+\frac{7991}{37387}a^{3}+\frac{2362}{5341}a^{2}+\frac{214}{763}a+\frac{6}{109}$, $\frac{1}{1831963}a^{32}-\frac{46}{1831963}a^{30}+\frac{204}{1831963}a^{29}-\frac{8}{261709}a^{28}-\frac{41}{261709}a^{27}-\frac{116}{1831963}a^{26}+\frac{36}{37387}a^{25}+\frac{2641}{1831963}a^{24}-\frac{1985}{1831963}a^{23}+\frac{88}{261709}a^{22}-\frac{3}{261709}a^{21}+\frac{18570}{1831963}a^{20}+\frac{26}{37387}a^{19}-\frac{17692}{1831963}a^{18}-\frac{3844}{1831963}a^{17}-\frac{2519}{261709}a^{16}+\frac{962}{261709}a^{15}+\frac{125}{16807}a^{14}+\frac{211}{37387}a^{13}+\frac{108593}{1831963}a^{12}-\frac{22845}{1831963}a^{11}+\frac{16615}{261709}a^{10}+\frac{11185}{261709}a^{9}+\frac{105120}{1831963}a^{8}+\frac{73}{5341}a^{7}-\frac{74288}{1831963}a^{6}+\frac{222951}{1831963}a^{5}-\frac{60138}{261709}a^{4}+\frac{1951}{5341}a^{3}+\frac{1364}{5341}a^{2}-\frac{94}{763}a-\frac{14}{109}$, $\frac{1}{1831963}a^{33}-\frac{52}{1831963}a^{30}-\frac{335}{1831963}a^{29}-\frac{8}{261709}a^{28}+\frac{136}{1831963}a^{27}-\frac{24}{261709}a^{26}-\frac{375}{261709}a^{25}-\frac{345}{1831963}a^{24}-\frac{802}{1831963}a^{23}-\frac{87}{261709}a^{22}+\frac{517}{1831963}a^{21}+\frac{2165}{261709}a^{20}-\frac{674}{261709}a^{19}-\frac{13794}{1831963}a^{18}-\frac{4845}{1831963}a^{17}+\frac{2143}{261709}a^{16}+\frac{7178}{1831963}a^{15}-\frac{2200}{261709}a^{14}+\frac{5854}{261709}a^{13}+\frac{47696}{1831963}a^{12}-\frac{128223}{1831963}a^{11}-\frac{1151}{261709}a^{10}-\frac{129303}{1831963}a^{9}+\frac{4273}{261709}a^{8}-\frac{18525}{261709}a^{7}+\frac{874073}{1831963}a^{6}+\frac{789678}{1831963}a^{5}+\frac{3219}{261709}a^{4}-\frac{13740}{37387}a^{3}-\frac{1115}{5341}a^{2}+\frac{263}{763}a-\frac{51}{109}$, $\frac{1}{12823741}a^{34}+\frac{2}{12823741}a^{33}-\frac{3}{12823741}a^{31}-\frac{361}{12823741}a^{30}+\frac{145}{12823741}a^{29}+\frac{353}{12823741}a^{28}-\frac{1618}{12823741}a^{27}-\frac{172}{1831963}a^{26}-\frac{18370}{12823741}a^{25}+\frac{10264}{12823741}a^{24}-\frac{3387}{12823741}a^{23}-\frac{6602}{12823741}a^{22}-\frac{16228}{12823741}a^{21}-\frac{8423}{1831963}a^{20}-\frac{44342}{12823741}a^{19}+\frac{85299}{12823741}a^{18}-\frac{23686}{12823741}a^{17}-\frac{834}{117649}a^{16}+\frac{29658}{12823741}a^{15}-\frac{9735}{1831963}a^{14}-\frac{675964}{12823741}a^{13}+\frac{202050}{12823741}a^{12}-\frac{505567}{12823741}a^{11}+\frac{510273}{12823741}a^{10}+\frac{483919}{12823741}a^{9}-\frac{99319}{1831963}a^{8}+\frac{409742}{12823741}a^{7}+\frac{2142164}{12823741}a^{6}-\frac{574366}{12823741}a^{5}+\frac{116813}{261709}a^{4}+\frac{71566}{261709}a^{3}+\frac{1016}{5341}a^{2}-\frac{681}{5341}a+\frac{43}{109}$, $\frac{1}{12823741}a^{35}+\frac{3}{12823741}a^{33}-\frac{3}{12823741}a^{32}+\frac{2}{12823741}a^{31}-\frac{190}{12823741}a^{30}+\frac{367}{1831963}a^{29}-\frac{248}{1831963}a^{28}-\frac{2259}{12823741}a^{27}-\frac{86}{12823741}a^{26}-\frac{10382}{12823741}a^{25}-\frac{1361}{12823741}a^{24}-\frac{3874}{12823741}a^{23}+\frac{961}{1831963}a^{22}+\frac{8964}{12823741}a^{21}+\frac{125422}{12823741}a^{20}+\frac{26381}{12823741}a^{19}-\frac{48432}{12823741}a^{18}+\frac{124039}{12823741}a^{17}+\frac{12395}{1831963}a^{16}+\frac{22647}{12823741}a^{15}+\frac{91740}{12823741}a^{14}-\frac{119379}{12823741}a^{13}+\frac{240622}{12823741}a^{12}+\frac{720180}{12823741}a^{11}-\frac{50348}{1831963}a^{10}+\frac{879056}{12823741}a^{9}+\frac{896991}{12823741}a^{8}+\frac{40952}{12823741}a^{7}+\frac{3201974}{12823741}a^{6}+\frac{2196751}{12823741}a^{5}-\frac{14094}{37387}a^{4}+\frac{2678}{261709}a^{3}+\frac{4}{5341}a^{2}-\frac{2222}{5341}a-\frac{49}{109}$, $\frac{1}{12\!\cdots\!43}a^{36}-\frac{412851911658}{17\!\cdots\!49}a^{35}-\frac{2964056032480}{12\!\cdots\!43}a^{34}-\frac{13149144397105}{12\!\cdots\!43}a^{33}-\frac{17812209769660}{12\!\cdots\!43}a^{32}-\frac{18726112800466}{12\!\cdots\!43}a^{31}+\frac{59136808882063}{25\!\cdots\!07}a^{30}-\frac{30\!\cdots\!26}{17\!\cdots\!49}a^{29}-\frac{15\!\cdots\!64}{12\!\cdots\!43}a^{28}+\frac{23\!\cdots\!77}{12\!\cdots\!43}a^{27}-\frac{13\!\cdots\!11}{12\!\cdots\!43}a^{26}-\frac{15\!\cdots\!73}{12\!\cdots\!43}a^{25}-\frac{71\!\cdots\!11}{12\!\cdots\!43}a^{24}-\frac{18\!\cdots\!38}{17\!\cdots\!49}a^{23}+\frac{40\!\cdots\!77}{12\!\cdots\!43}a^{22}+\frac{32\!\cdots\!97}{12\!\cdots\!43}a^{21}+\frac{28\!\cdots\!61}{12\!\cdots\!43}a^{20}+\frac{87\!\cdots\!25}{12\!\cdots\!43}a^{19}-\frac{64\!\cdots\!01}{12\!\cdots\!43}a^{18}-\frac{23\!\cdots\!19}{25\!\cdots\!07}a^{17}-\frac{92\!\cdots\!96}{12\!\cdots\!43}a^{16}+\frac{58\!\cdots\!68}{12\!\cdots\!43}a^{15}+\frac{63\!\cdots\!55}{12\!\cdots\!43}a^{14}+\frac{66\!\cdots\!92}{12\!\cdots\!43}a^{13}+\frac{17\!\cdots\!40}{12\!\cdots\!43}a^{12}-\frac{76\!\cdots\!97}{17\!\cdots\!49}a^{11}+\frac{30\!\cdots\!34}{12\!\cdots\!43}a^{10}-\frac{39\!\cdots\!53}{12\!\cdots\!43}a^{9}+\frac{96\!\cdots\!98}{12\!\cdots\!43}a^{8}-\frac{29\!\cdots\!80}{12\!\cdots\!43}a^{7}+\frac{11\!\cdots\!11}{12\!\cdots\!43}a^{6}-\frac{30\!\cdots\!44}{25\!\cdots\!07}a^{5}+\frac{46\!\cdots\!62}{25\!\cdots\!07}a^{4}-\frac{15\!\cdots\!88}{51\!\cdots\!43}a^{3}-\frac{24\!\cdots\!21}{51\!\cdots\!43}a^{2}+\frac{139884559488776}{10\!\cdots\!07}a-\frac{28498325660244}{148861085061701}$, $\frac{1}{34\!\cdots\!03}a^{37}+\frac{16\!\cdots\!09}{34\!\cdots\!03}a^{36}-\frac{11\!\cdots\!67}{34\!\cdots\!03}a^{35}+\frac{99\!\cdots\!06}{34\!\cdots\!03}a^{34}+\frac{11\!\cdots\!83}{49\!\cdots\!29}a^{33}+\frac{27\!\cdots\!12}{34\!\cdots\!03}a^{32}-\frac{33\!\cdots\!53}{34\!\cdots\!03}a^{31}+\frac{10\!\cdots\!76}{49\!\cdots\!29}a^{30}+\frac{64\!\cdots\!24}{34\!\cdots\!03}a^{29}+\frac{66\!\cdots\!09}{34\!\cdots\!03}a^{28}+\frac{34\!\cdots\!39}{49\!\cdots\!29}a^{27}+\frac{56\!\cdots\!06}{34\!\cdots\!03}a^{26}+\frac{32\!\cdots\!01}{34\!\cdots\!03}a^{25}-\frac{26\!\cdots\!10}{34\!\cdots\!03}a^{24}+\frac{47\!\cdots\!95}{34\!\cdots\!03}a^{23}+\frac{22\!\cdots\!52}{34\!\cdots\!03}a^{22}+\frac{70\!\cdots\!37}{49\!\cdots\!29}a^{21}+\frac{32\!\cdots\!38}{34\!\cdots\!03}a^{20}-\frac{79\!\cdots\!57}{34\!\cdots\!03}a^{19}-\frac{24\!\cdots\!44}{34\!\cdots\!03}a^{18}+\frac{26\!\cdots\!97}{34\!\cdots\!03}a^{17}+\frac{14\!\cdots\!38}{34\!\cdots\!03}a^{16}+\frac{47\!\cdots\!61}{49\!\cdots\!29}a^{15}+\frac{29\!\cdots\!38}{34\!\cdots\!03}a^{14}+\frac{20\!\cdots\!58}{34\!\cdots\!03}a^{13}+\frac{15\!\cdots\!74}{34\!\cdots\!03}a^{12}-\frac{15\!\cdots\!91}{34\!\cdots\!03}a^{11}+\frac{11\!\cdots\!01}{34\!\cdots\!03}a^{10}-\frac{81\!\cdots\!18}{49\!\cdots\!29}a^{9}+\frac{19\!\cdots\!50}{34\!\cdots\!03}a^{8}+\frac{22\!\cdots\!75}{34\!\cdots\!03}a^{7}-\frac{10\!\cdots\!82}{34\!\cdots\!03}a^{6}+\frac{19\!\cdots\!99}{49\!\cdots\!29}a^{5}-\frac{21\!\cdots\!44}{70\!\cdots\!47}a^{4}+\frac{27\!\cdots\!38}{10\!\cdots\!21}a^{3}+\frac{57\!\cdots\!80}{14\!\cdots\!03}a^{2}-\frac{33\!\cdots\!93}{20\!\cdots\!29}a+\frac{17\!\cdots\!24}{41\!\cdots\!21}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $7$

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $18$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^38 - x^37 + 194*x^36 - 202*x^35 + 16279*x^34 - 7863*x^33 + 772861*x^32 + 402596*x^31 + 23045822*x^30 + 40384193*x^29 + 479536671*x^28 + 1351816180*x^27 + 7928555878*x^26 + 25902608554*x^25 + 111456458601*x^24 + 341385389946*x^23 + 1297163210108*x^22 + 3493633650369*x^21 + 12095301942774*x^20 + 29754895552994*x^19 + 90602135732080*x^18 + 209292172135889*x^17 + 578704163180687*x^16 + 1150796400064466*x^15 + 3249066298571457*x^14 + 4892053641982278*x^13 + 14078439508345248*x^12 + 18448183569455711*x^11 + 46083907583218775*x^10 + 65495333977938485*x^9 + 111449247373051429*x^8 + 177739871270855783*x^7 + 253288222342260757*x^6 + 334042708854918147*x^5 + 456173375797126253*x^4 + 247500381632980217*x^3 + 331215018154218380*x^2 + 303420818935344453*x + 79580728329881359)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^38 - x^37 + 194*x^36 - 202*x^35 + 16279*x^34 - 7863*x^33 + 772861*x^32 + 402596*x^31 + 23045822*x^30 + 40384193*x^29 + 479536671*x^28 + 1351816180*x^27 + 7928555878*x^26 + 25902608554*x^25 + 111456458601*x^24 + 341385389946*x^23 + 1297163210108*x^22 + 3493633650369*x^21 + 12095301942774*x^20 + 29754895552994*x^19 + 90602135732080*x^18 + 209292172135889*x^17 + 578704163180687*x^16 + 1150796400064466*x^15 + 3249066298571457*x^14 + 4892053641982278*x^13 + 14078439508345248*x^12 + 18448183569455711*x^11 + 46083907583218775*x^10 + 65495333977938485*x^9 + 111449247373051429*x^8 + 177739871270855783*x^7 + 253288222342260757*x^6 + 334042708854918147*x^5 + 456173375797126253*x^4 + 247500381632980217*x^3 + 331215018154218380*x^2 + 303420818935344453*x + 79580728329881359, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^38 - x^37 + 194*x^36 - 202*x^35 + 16279*x^34 - 7863*x^33 + 772861*x^32 + 402596*x^31 + 23045822*x^30 + 40384193*x^29 + 479536671*x^28 + 1351816180*x^27 + 7928555878*x^26 + 25902608554*x^25 + 111456458601*x^24 + 341385389946*x^23 + 1297163210108*x^22 + 3493633650369*x^21 + 12095301942774*x^20 + 29754895552994*x^19 + 90602135732080*x^18 + 209292172135889*x^17 + 578704163180687*x^16 + 1150796400064466*x^15 + 3249066298571457*x^14 + 4892053641982278*x^13 + 14078439508345248*x^12 + 18448183569455711*x^11 + 46083907583218775*x^10 + 65495333977938485*x^9 + 111449247373051429*x^8 + 177739871270855783*x^7 + 253288222342260757*x^6 + 334042708854918147*x^5 + 456173375797126253*x^4 + 247500381632980217*x^3 + 331215018154218380*x^2 + 303420818935344453*x + 79580728329881359);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^38 - x^37 + 194*x^36 - 202*x^35 + 16279*x^34 - 7863*x^33 + 772861*x^32 + 402596*x^31 + 23045822*x^30 + 40384193*x^29 + 479536671*x^28 + 1351816180*x^27 + 7928555878*x^26 + 25902608554*x^25 + 111456458601*x^24 + 341385389946*x^23 + 1297163210108*x^22 + 3493633650369*x^21 + 12095301942774*x^20 + 29754895552994*x^19 + 90602135732080*x^18 + 209292172135889*x^17 + 578704163180687*x^16 + 1150796400064466*x^15 + 3249066298571457*x^14 + 4892053641982278*x^13 + 14078439508345248*x^12 + 18448183569455711*x^11 + 46083907583218775*x^10 + 65495333977938485*x^9 + 111449247373051429*x^8 + 177739871270855783*x^7 + 253288222342260757*x^6 + 334042708854918147*x^5 + 456173375797126253*x^4 + 247500381632980217*x^3 + 331215018154218380*x^2 + 303420818935344453*x + 79580728329881359);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{38}$ (as 38T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 38
The 38 conjugacy class representatives for $C_{38}$
Character table for $C_{38}$

Intermediate fields

\(\Q(\sqrt{-955}) \), 19.19.114445997944945591651333831028437092270721.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $38$ $38$ R ${\href{/padicField/7.1.0.1}{1} }^{38}$ $38$ $38$ $38$ $38$ $38$ $38$ $38$ $19^{2}$ $38$ $38$ $19^{2}$ $19^{2}$ $19^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $38$$2$$19$$19$
\(191\) Copy content Toggle raw display Deg $38$$38$$1$$37$