Properties

Label 39.39.156...969.1
Degree $39$
Signature $[39, 0]$
Discriminant $1.564\times 10^{98}$
Root discriminant \(329.46\)
Ramified primes $7,131$
Class number not computed
Class group not computed
Galois group $C_{39}$ (as 39T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^39 - 10*x^38 - 163*x^37 + 1930*x^36 + 10036*x^35 - 159252*x^34 - 244026*x^33 + 7427095*x^32 - 2389017*x^31 - 217511108*x^30 + 326735317*x^29 + 4189088926*x^28 - 10153118781*x^27 - 53678089242*x^26 + 179337849315*x^25 + 446153115950*x^24 - 2052054489049*x^23 - 2151039397974*x^22 + 15813321949956*x^21 + 2821647348255*x^20 - 82489984035674*x^19 + 33701919033939*x^18 + 286106777644803*x^17 - 243663734729882*x^16 - 630941672277082*x^15 + 788875500248585*x^14 + 805762979991898*x^13 - 1416423805872644*x^12 - 462194605752742*x^11 + 1418910665071105*x^10 - 50123800376408*x^9 - 755859394498746*x^8 + 182503268720113*x^7 + 191800233365760*x^6 - 72017807491341*x^5 - 18496135085754*x^4 + 9851455470329*x^3 + 124863566729*x^2 - 388373575025*x + 27293535527)
 
gp: K = bnfinit(y^39 - 10*y^38 - 163*y^37 + 1930*y^36 + 10036*y^35 - 159252*y^34 - 244026*y^33 + 7427095*y^32 - 2389017*y^31 - 217511108*y^30 + 326735317*y^29 + 4189088926*y^28 - 10153118781*y^27 - 53678089242*y^26 + 179337849315*y^25 + 446153115950*y^24 - 2052054489049*y^23 - 2151039397974*y^22 + 15813321949956*y^21 + 2821647348255*y^20 - 82489984035674*y^19 + 33701919033939*y^18 + 286106777644803*y^17 - 243663734729882*y^16 - 630941672277082*y^15 + 788875500248585*y^14 + 805762979991898*y^13 - 1416423805872644*y^12 - 462194605752742*y^11 + 1418910665071105*y^10 - 50123800376408*y^9 - 755859394498746*y^8 + 182503268720113*y^7 + 191800233365760*y^6 - 72017807491341*y^5 - 18496135085754*y^4 + 9851455470329*y^3 + 124863566729*y^2 - 388373575025*y + 27293535527, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^39 - 10*x^38 - 163*x^37 + 1930*x^36 + 10036*x^35 - 159252*x^34 - 244026*x^33 + 7427095*x^32 - 2389017*x^31 - 217511108*x^30 + 326735317*x^29 + 4189088926*x^28 - 10153118781*x^27 - 53678089242*x^26 + 179337849315*x^25 + 446153115950*x^24 - 2052054489049*x^23 - 2151039397974*x^22 + 15813321949956*x^21 + 2821647348255*x^20 - 82489984035674*x^19 + 33701919033939*x^18 + 286106777644803*x^17 - 243663734729882*x^16 - 630941672277082*x^15 + 788875500248585*x^14 + 805762979991898*x^13 - 1416423805872644*x^12 - 462194605752742*x^11 + 1418910665071105*x^10 - 50123800376408*x^9 - 755859394498746*x^8 + 182503268720113*x^7 + 191800233365760*x^6 - 72017807491341*x^5 - 18496135085754*x^4 + 9851455470329*x^3 + 124863566729*x^2 - 388373575025*x + 27293535527);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^39 - 10*x^38 - 163*x^37 + 1930*x^36 + 10036*x^35 - 159252*x^34 - 244026*x^33 + 7427095*x^32 - 2389017*x^31 - 217511108*x^30 + 326735317*x^29 + 4189088926*x^28 - 10153118781*x^27 - 53678089242*x^26 + 179337849315*x^25 + 446153115950*x^24 - 2052054489049*x^23 - 2151039397974*x^22 + 15813321949956*x^21 + 2821647348255*x^20 - 82489984035674*x^19 + 33701919033939*x^18 + 286106777644803*x^17 - 243663734729882*x^16 - 630941672277082*x^15 + 788875500248585*x^14 + 805762979991898*x^13 - 1416423805872644*x^12 - 462194605752742*x^11 + 1418910665071105*x^10 - 50123800376408*x^9 - 755859394498746*x^8 + 182503268720113*x^7 + 191800233365760*x^6 - 72017807491341*x^5 - 18496135085754*x^4 + 9851455470329*x^3 + 124863566729*x^2 - 388373575025*x + 27293535527)
 

\( x^{39} - 10 x^{38} - 163 x^{37} + 1930 x^{36} + 10036 x^{35} - 159252 x^{34} - 244026 x^{33} + \cdots + 27293535527 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $39$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[39, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(156\!\cdots\!969\) \(\medspace = 7^{26}\cdot 131^{36}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(329.46\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{2/3}131^{12/13}\approx 329.4602064654238$
Ramified primes:   \(7\), \(131\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $39$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(917=7\cdot 131\)
Dirichlet character group:    $\lbrace$$\chi_{917}(1,·)$, $\chi_{917}(898,·)$, $\chi_{917}(375,·)$, $\chi_{917}(263,·)$, $\chi_{917}(394,·)$, $\chi_{917}(99,·)$, $\chi_{917}(39,·)$, $\chi_{917}(170,·)$, $\chi_{917}(176,·)$, $\chi_{917}(694,·)$, $\chi_{917}(183,·)$, $\chi_{917}(569,·)$, $\chi_{917}(60,·)$, $\chi_{917}(445,·)$, $\chi_{917}(191,·)$, $\chi_{917}(576,·)$, $\chi_{917}(193,·)$, $\chi_{917}(324,·)$, $\chi_{917}(438,·)$, $\chi_{917}(456,·)$, $\chi_{917}(715,·)$, $\chi_{917}(718,·)$, $\chi_{917}(848,·)$, $\chi_{917}(849,·)$, $\chi_{917}(211,·)$, $\chi_{917}(473,·)$, $\chi_{917}(604,·)$, $\chi_{917}(477,·)$, $\chi_{917}(739,·)$, $\chi_{917}(870,·)$, $\chi_{917}(361,·)$, $\chi_{917}(107,·)$, $\chi_{917}(492,·)$, $\chi_{917}(113,·)$, $\chi_{917}(631,·)$, $\chi_{917}(505,·)$, $\chi_{917}(506,·)$, $\chi_{917}(893,·)$, $\chi_{917}(767,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $\frac{1}{5737727}a^{33}+\frac{149395}{5737727}a^{32}+\frac{356080}{5737727}a^{31}+\frac{2754262}{5737727}a^{30}+\frac{2229349}{5737727}a^{29}-\frac{2103741}{5737727}a^{28}-\frac{1169040}{5737727}a^{27}+\frac{1262892}{5737727}a^{26}-\frac{2722691}{5737727}a^{25}-\frac{1452528}{5737727}a^{24}-\frac{1647051}{5737727}a^{23}-\frac{2537819}{5737727}a^{22}+\frac{1319740}{5737727}a^{21}+\frac{2058212}{5737727}a^{20}+\frac{310529}{5737727}a^{19}-\frac{453193}{5737727}a^{18}-\frac{1996259}{5737727}a^{17}-\frac{629131}{5737727}a^{16}-\frac{2593685}{5737727}a^{15}+\frac{2687784}{5737727}a^{14}+\frac{2604605}{5737727}a^{13}+\frac{2017555}{5737727}a^{12}+\frac{11870}{78599}a^{11}-\frac{2793164}{5737727}a^{10}-\frac{1052838}{5737727}a^{9}-\frac{1807200}{5737727}a^{8}-\frac{428865}{5737727}a^{7}-\frac{697793}{5737727}a^{6}+\frac{823084}{5737727}a^{5}+\frac{1233456}{5737727}a^{4}-\frac{1698445}{5737727}a^{3}+\frac{1341394}{5737727}a^{2}-\frac{143744}{5737727}a-\frac{468226}{5737727}$, $\frac{1}{5737727}a^{34}+\frac{1248085}{5737727}a^{32}+\frac{649679}{5737727}a^{31}-\frac{1125790}{5737727}a^{30}+\frac{2141573}{5737727}a^{29}-\frac{2516497}{5737727}a^{28}-\frac{678461}{5737727}a^{27}+\frac{1203910}{5737727}a^{26}+\frac{1764660}{5737727}a^{25}-\frac{2061631}{5737727}a^{24}+\frac{1961658}{5737727}a^{23}+\frac{1264539}{5737727}a^{22}-\frac{723914}{5737727}a^{21}-\frac{1481281}{5737727}a^{20}-\frac{2410353}{5737727}a^{19}-\frac{45408}{108259}a^{18}+\frac{647895}{5737727}a^{17}+\frac{2463800}{5737727}a^{16}+\frac{340868}{5737727}a^{15}-\frac{1275161}{5737727}a^{14}+\frac{2485539}{5737727}a^{13}+\frac{2512049}{5737727}a^{12}-\frac{458040}{5737727}a^{11}+\frac{1749140}{5737727}a^{10}-\frac{1384441}{5737727}a^{9}-\frac{2528850}{5737727}a^{8}+\frac{2129200}{5737727}a^{7}-\frac{1153544}{5737727}a^{6}+\frac{1826613}{5737727}a^{5}-\frac{1017233}{5737727}a^{4}+\frac{1031048}{5737727}a^{3}-\frac{1847172}{5737727}a^{2}-\frac{2145507}{5737727}a+\frac{1993413}{5737727}$, $\frac{1}{5737727}a^{35}+\frac{1905423}{5737727}a^{32}+\frac{2149922}{5737727}a^{31}+\frac{1627181}{5737727}a^{30}-\frac{658144}{5737727}a^{29}-\frac{82673}{5737727}a^{28}-\frac{1319701}{5737727}a^{27}-\frac{1026171}{5737727}a^{26}+\frac{1870262}{5737727}a^{25}-\frac{376928}{5737727}a^{24}-\frac{278143}{5737727}a^{23}-\frac{1546290}{5737727}a^{22}-\frac{2676110}{5737727}a^{21}+\frac{345343}{5737727}a^{20}-\frac{2747920}{5737727}a^{19}-\frac{1094360}{5737727}a^{18}-\frac{1292849}{5737727}a^{17}+\frac{1365053}{5737727}a^{16}-\frac{1439431}{5737727}a^{15}-\frac{1104370}{5737727}a^{14}+\frac{689744}{5737727}a^{13}+\frac{1231913}{5737727}a^{12}-\frac{910615}{5737727}a^{11}-\frac{513253}{5737727}a^{10}-\frac{2500252}{5737727}a^{9}+\frac{693411}{5737727}a^{8}-\frac{2256395}{5737727}a^{7}+\frac{172596}{5737727}a^{6}+\frac{2830707}{5737727}a^{5}-\frac{1795704}{5737727}a^{4}-\frac{1359497}{5737727}a^{3}+\frac{1058971}{5737727}a^{2}-\frac{524183}{5737727}a-\frac{1647740}{5737727}$, $\frac{1}{29\!\cdots\!77}a^{36}-\frac{2274626859}{29\!\cdots\!77}a^{35}-\frac{596189750}{29\!\cdots\!77}a^{34}-\frac{163735443}{29\!\cdots\!77}a^{33}+\frac{14\!\cdots\!64}{29\!\cdots\!77}a^{32}+\frac{106768340929779}{559537848696109}a^{31}-\frac{75\!\cdots\!04}{29\!\cdots\!77}a^{30}-\frac{41\!\cdots\!94}{29\!\cdots\!77}a^{29}+\frac{11\!\cdots\!25}{29\!\cdots\!77}a^{28}-\frac{22\!\cdots\!61}{29\!\cdots\!77}a^{27}+\frac{12\!\cdots\!00}{29\!\cdots\!77}a^{26}-\frac{17\!\cdots\!43}{29\!\cdots\!77}a^{25}+\frac{82\!\cdots\!94}{29\!\cdots\!77}a^{24}-\frac{908448520328916}{29\!\cdots\!77}a^{23}+\frac{52\!\cdots\!98}{29\!\cdots\!77}a^{22}-\frac{37\!\cdots\!44}{29\!\cdots\!77}a^{21}-\frac{57\!\cdots\!80}{29\!\cdots\!77}a^{20}-\frac{37\!\cdots\!75}{29\!\cdots\!77}a^{19}+\frac{136813646936267}{406239807957449}a^{18}-\frac{14\!\cdots\!69}{29\!\cdots\!77}a^{17}+\frac{92\!\cdots\!85}{29\!\cdots\!77}a^{16}+\frac{909146947841258}{29\!\cdots\!77}a^{15}-\frac{72\!\cdots\!35}{29\!\cdots\!77}a^{14}+\frac{12\!\cdots\!30}{29\!\cdots\!77}a^{13}-\frac{65\!\cdots\!02}{29\!\cdots\!77}a^{12}+\frac{10\!\cdots\!07}{29\!\cdots\!77}a^{11}+\frac{109403544311628}{486155835752357}a^{10}+\frac{35\!\cdots\!92}{29\!\cdots\!77}a^{9}+\frac{75\!\cdots\!95}{29\!\cdots\!77}a^{8}+\frac{12\!\cdots\!12}{29\!\cdots\!77}a^{7}-\frac{57\!\cdots\!31}{29\!\cdots\!77}a^{6}+\frac{78\!\cdots\!29}{29\!\cdots\!77}a^{5}+\frac{11\!\cdots\!09}{29\!\cdots\!77}a^{4}+\frac{49\!\cdots\!89}{29\!\cdots\!77}a^{3}-\frac{11\!\cdots\!75}{29\!\cdots\!77}a^{2}-\frac{73\!\cdots\!35}{29\!\cdots\!77}a+\frac{14\!\cdots\!64}{29\!\cdots\!77}$, $\frac{1}{29\!\cdots\!77}a^{37}-\frac{738017409}{29\!\cdots\!77}a^{35}-\frac{2299576160}{29\!\cdots\!77}a^{34}-\frac{2042148948}{29\!\cdots\!77}a^{33}-\frac{11\!\cdots\!66}{29\!\cdots\!77}a^{32}+\frac{133984210184873}{29\!\cdots\!77}a^{31}-\frac{27\!\cdots\!03}{29\!\cdots\!77}a^{30}+\frac{10\!\cdots\!10}{29\!\cdots\!77}a^{29}+\frac{54\!\cdots\!18}{29\!\cdots\!77}a^{28}-\frac{66\!\cdots\!60}{29\!\cdots\!77}a^{27}-\frac{82\!\cdots\!48}{29\!\cdots\!77}a^{26}+\frac{30\!\cdots\!01}{29\!\cdots\!77}a^{25}+\frac{13\!\cdots\!33}{29\!\cdots\!77}a^{24}-\frac{48\!\cdots\!48}{29\!\cdots\!77}a^{23}-\frac{11\!\cdots\!11}{29\!\cdots\!77}a^{22}-\frac{13\!\cdots\!87}{29\!\cdots\!77}a^{21}-\frac{10\!\cdots\!86}{29\!\cdots\!77}a^{20}-\frac{95\!\cdots\!13}{29\!\cdots\!77}a^{19}+\frac{12\!\cdots\!32}{29\!\cdots\!77}a^{18}-\frac{14\!\cdots\!07}{29\!\cdots\!77}a^{17}+\frac{230893444525255}{559537848696109}a^{16}-\frac{13\!\cdots\!28}{29\!\cdots\!77}a^{15}+\frac{58\!\cdots\!68}{29\!\cdots\!77}a^{14}-\frac{94\!\cdots\!47}{29\!\cdots\!77}a^{13}-\frac{12\!\cdots\!91}{29\!\cdots\!77}a^{12}+\frac{19\!\cdots\!95}{29\!\cdots\!77}a^{11}-\frac{22\!\cdots\!62}{29\!\cdots\!77}a^{10}-\frac{12\!\cdots\!96}{29\!\cdots\!77}a^{9}-\frac{13\!\cdots\!73}{29\!\cdots\!77}a^{8}-\frac{80\!\cdots\!35}{29\!\cdots\!77}a^{7}-\frac{13\!\cdots\!43}{29\!\cdots\!77}a^{6}-\frac{73\!\cdots\!78}{29\!\cdots\!77}a^{5}-\frac{35\!\cdots\!73}{29\!\cdots\!77}a^{4}-\frac{11\!\cdots\!94}{29\!\cdots\!77}a^{3}-\frac{13\!\cdots\!61}{29\!\cdots\!77}a^{2}-\frac{38\!\cdots\!65}{29\!\cdots\!77}a-\frac{14\!\cdots\!74}{29\!\cdots\!77}$, $\frac{1}{53\!\cdots\!13}a^{38}-\frac{58\!\cdots\!64}{53\!\cdots\!13}a^{37}+\frac{81\!\cdots\!95}{53\!\cdots\!13}a^{36}+\frac{10\!\cdots\!21}{59\!\cdots\!17}a^{35}+\frac{21\!\cdots\!28}{53\!\cdots\!13}a^{34}+\frac{34\!\cdots\!83}{53\!\cdots\!13}a^{33}-\frac{13\!\cdots\!32}{30\!\cdots\!81}a^{32}-\frac{26\!\cdots\!98}{53\!\cdots\!13}a^{31}+\frac{11\!\cdots\!48}{53\!\cdots\!13}a^{30}-\frac{12\!\cdots\!76}{53\!\cdots\!13}a^{29}-\frac{40\!\cdots\!76}{53\!\cdots\!13}a^{28}+\frac{79\!\cdots\!58}{53\!\cdots\!13}a^{27}+\frac{47\!\cdots\!84}{53\!\cdots\!13}a^{26}+\frac{24\!\cdots\!59}{53\!\cdots\!13}a^{25}+\frac{21\!\cdots\!60}{53\!\cdots\!13}a^{24}-\frac{19\!\cdots\!62}{53\!\cdots\!13}a^{23}-\frac{13\!\cdots\!32}{53\!\cdots\!13}a^{22}-\frac{20\!\cdots\!24}{53\!\cdots\!13}a^{21}+\frac{87\!\cdots\!36}{53\!\cdots\!13}a^{20}+\frac{20\!\cdots\!09}{53\!\cdots\!13}a^{19}+\frac{47\!\cdots\!99}{53\!\cdots\!13}a^{18}+\frac{12\!\cdots\!82}{53\!\cdots\!13}a^{17}+\frac{24\!\cdots\!20}{53\!\cdots\!13}a^{16}+\frac{21\!\cdots\!26}{53\!\cdots\!13}a^{15}-\frac{26\!\cdots\!58}{53\!\cdots\!13}a^{14}+\frac{10\!\cdots\!42}{53\!\cdots\!13}a^{13}-\frac{26\!\cdots\!16}{53\!\cdots\!13}a^{12}+\frac{24\!\cdots\!84}{53\!\cdots\!13}a^{11}-\frac{60\!\cdots\!98}{53\!\cdots\!13}a^{10}-\frac{23\!\cdots\!19}{53\!\cdots\!13}a^{9}-\frac{24\!\cdots\!16}{53\!\cdots\!13}a^{8}+\frac{22\!\cdots\!82}{53\!\cdots\!13}a^{7}-\frac{22\!\cdots\!45}{53\!\cdots\!13}a^{6}+\frac{19\!\cdots\!84}{53\!\cdots\!13}a^{5}-\frac{23\!\cdots\!75}{53\!\cdots\!13}a^{4}-\frac{13\!\cdots\!61}{53\!\cdots\!13}a^{3}+\frac{95\!\cdots\!33}{30\!\cdots\!81}a^{2}+\frac{72\!\cdots\!45}{53\!\cdots\!13}a-\frac{21\!\cdots\!97}{50\!\cdots\!37}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $38$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^39 - 10*x^38 - 163*x^37 + 1930*x^36 + 10036*x^35 - 159252*x^34 - 244026*x^33 + 7427095*x^32 - 2389017*x^31 - 217511108*x^30 + 326735317*x^29 + 4189088926*x^28 - 10153118781*x^27 - 53678089242*x^26 + 179337849315*x^25 + 446153115950*x^24 - 2052054489049*x^23 - 2151039397974*x^22 + 15813321949956*x^21 + 2821647348255*x^20 - 82489984035674*x^19 + 33701919033939*x^18 + 286106777644803*x^17 - 243663734729882*x^16 - 630941672277082*x^15 + 788875500248585*x^14 + 805762979991898*x^13 - 1416423805872644*x^12 - 462194605752742*x^11 + 1418910665071105*x^10 - 50123800376408*x^9 - 755859394498746*x^8 + 182503268720113*x^7 + 191800233365760*x^6 - 72017807491341*x^5 - 18496135085754*x^4 + 9851455470329*x^3 + 124863566729*x^2 - 388373575025*x + 27293535527)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^39 - 10*x^38 - 163*x^37 + 1930*x^36 + 10036*x^35 - 159252*x^34 - 244026*x^33 + 7427095*x^32 - 2389017*x^31 - 217511108*x^30 + 326735317*x^29 + 4189088926*x^28 - 10153118781*x^27 - 53678089242*x^26 + 179337849315*x^25 + 446153115950*x^24 - 2052054489049*x^23 - 2151039397974*x^22 + 15813321949956*x^21 + 2821647348255*x^20 - 82489984035674*x^19 + 33701919033939*x^18 + 286106777644803*x^17 - 243663734729882*x^16 - 630941672277082*x^15 + 788875500248585*x^14 + 805762979991898*x^13 - 1416423805872644*x^12 - 462194605752742*x^11 + 1418910665071105*x^10 - 50123800376408*x^9 - 755859394498746*x^8 + 182503268720113*x^7 + 191800233365760*x^6 - 72017807491341*x^5 - 18496135085754*x^4 + 9851455470329*x^3 + 124863566729*x^2 - 388373575025*x + 27293535527, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^39 - 10*x^38 - 163*x^37 + 1930*x^36 + 10036*x^35 - 159252*x^34 - 244026*x^33 + 7427095*x^32 - 2389017*x^31 - 217511108*x^30 + 326735317*x^29 + 4189088926*x^28 - 10153118781*x^27 - 53678089242*x^26 + 179337849315*x^25 + 446153115950*x^24 - 2052054489049*x^23 - 2151039397974*x^22 + 15813321949956*x^21 + 2821647348255*x^20 - 82489984035674*x^19 + 33701919033939*x^18 + 286106777644803*x^17 - 243663734729882*x^16 - 630941672277082*x^15 + 788875500248585*x^14 + 805762979991898*x^13 - 1416423805872644*x^12 - 462194605752742*x^11 + 1418910665071105*x^10 - 50123800376408*x^9 - 755859394498746*x^8 + 182503268720113*x^7 + 191800233365760*x^6 - 72017807491341*x^5 - 18496135085754*x^4 + 9851455470329*x^3 + 124863566729*x^2 - 388373575025*x + 27293535527);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^39 - 10*x^38 - 163*x^37 + 1930*x^36 + 10036*x^35 - 159252*x^34 - 244026*x^33 + 7427095*x^32 - 2389017*x^31 - 217511108*x^30 + 326735317*x^29 + 4189088926*x^28 - 10153118781*x^27 - 53678089242*x^26 + 179337849315*x^25 + 446153115950*x^24 - 2052054489049*x^23 - 2151039397974*x^22 + 15813321949956*x^21 + 2821647348255*x^20 - 82489984035674*x^19 + 33701919033939*x^18 + 286106777644803*x^17 - 243663734729882*x^16 - 630941672277082*x^15 + 788875500248585*x^14 + 805762979991898*x^13 - 1416423805872644*x^12 - 462194605752742*x^11 + 1418910665071105*x^10 - 50123800376408*x^9 - 755859394498746*x^8 + 182503268720113*x^7 + 191800233365760*x^6 - 72017807491341*x^5 - 18496135085754*x^4 + 9851455470329*x^3 + 124863566729*x^2 - 388373575025*x + 27293535527);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{39}$ (as 39T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 39
The 39 conjugacy class representatives for $C_{39}$
Character table for $C_{39}$

Intermediate fields

\(\Q(\zeta_{7})^+\), 13.13.25542038069936263923006961.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $39$ $39$ $39$ R $39$ ${\href{/padicField/13.13.0.1}{13} }^{3}$ $39$ $39$ $39$ ${\href{/padicField/29.13.0.1}{13} }^{3}$ $39$ $39$ ${\href{/padicField/41.13.0.1}{13} }^{3}$ ${\href{/padicField/43.13.0.1}{13} }^{3}$ $39$ ${\href{/padicField/53.3.0.1}{3} }^{13}$ $39$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display Deg $39$$3$$13$$26$
\(131\) Copy content Toggle raw display Deg $39$$13$$3$$36$