Properties

Label 42.0.228...203.1
Degree $42$
Signature $[0, 21]$
Discriminant $-2.282\times 10^{75}$
Root discriminant \(62.27\)
Ramified primes $3,43$
Class number $179249$ (GRH)
Class group [179249] (GRH)
Galois group $C_{42}$ (as 42T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^42 - x^41 + 21*x^40 - 18*x^39 + 248*x^38 - 191*x^37 + 1996*x^36 - 1375*x^35 + 12088*x^34 - 7495*x^33 + 57373*x^32 - 31825*x^31 + 219409*x^30 - 108700*x^29 + 684645*x^28 - 300153*x^27 + 1757705*x^26 - 677756*x^25 + 3715466*x^24 - 1242500*x^23 + 6455978*x^22 - 1853597*x^21 + 9148985*x^20 - 2205194*x^19 + 10469894*x^18 - 2090336*x^17 + 9505112*x^16 - 1507895*x^15 + 6709547*x^14 - 839645*x^13 + 3559478*x^12 - 314951*x^11 + 1368367*x^10 - 93808*x^9 + 355278*x^8 - 10362*x^7 + 58036*x^6 - 2497*x^5 + 4950*x^4 + 165*x^3 + 176*x^2 - 11*x + 1)
 
gp: K = bnfinit(y^42 - y^41 + 21*y^40 - 18*y^39 + 248*y^38 - 191*y^37 + 1996*y^36 - 1375*y^35 + 12088*y^34 - 7495*y^33 + 57373*y^32 - 31825*y^31 + 219409*y^30 - 108700*y^29 + 684645*y^28 - 300153*y^27 + 1757705*y^26 - 677756*y^25 + 3715466*y^24 - 1242500*y^23 + 6455978*y^22 - 1853597*y^21 + 9148985*y^20 - 2205194*y^19 + 10469894*y^18 - 2090336*y^17 + 9505112*y^16 - 1507895*y^15 + 6709547*y^14 - 839645*y^13 + 3559478*y^12 - 314951*y^11 + 1368367*y^10 - 93808*y^9 + 355278*y^8 - 10362*y^7 + 58036*y^6 - 2497*y^5 + 4950*y^4 + 165*y^3 + 176*y^2 - 11*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^42 - x^41 + 21*x^40 - 18*x^39 + 248*x^38 - 191*x^37 + 1996*x^36 - 1375*x^35 + 12088*x^34 - 7495*x^33 + 57373*x^32 - 31825*x^31 + 219409*x^30 - 108700*x^29 + 684645*x^28 - 300153*x^27 + 1757705*x^26 - 677756*x^25 + 3715466*x^24 - 1242500*x^23 + 6455978*x^22 - 1853597*x^21 + 9148985*x^20 - 2205194*x^19 + 10469894*x^18 - 2090336*x^17 + 9505112*x^16 - 1507895*x^15 + 6709547*x^14 - 839645*x^13 + 3559478*x^12 - 314951*x^11 + 1368367*x^10 - 93808*x^9 + 355278*x^8 - 10362*x^7 + 58036*x^6 - 2497*x^5 + 4950*x^4 + 165*x^3 + 176*x^2 - 11*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^42 - x^41 + 21*x^40 - 18*x^39 + 248*x^38 - 191*x^37 + 1996*x^36 - 1375*x^35 + 12088*x^34 - 7495*x^33 + 57373*x^32 - 31825*x^31 + 219409*x^30 - 108700*x^29 + 684645*x^28 - 300153*x^27 + 1757705*x^26 - 677756*x^25 + 3715466*x^24 - 1242500*x^23 + 6455978*x^22 - 1853597*x^21 + 9148985*x^20 - 2205194*x^19 + 10469894*x^18 - 2090336*x^17 + 9505112*x^16 - 1507895*x^15 + 6709547*x^14 - 839645*x^13 + 3559478*x^12 - 314951*x^11 + 1368367*x^10 - 93808*x^9 + 355278*x^8 - 10362*x^7 + 58036*x^6 - 2497*x^5 + 4950*x^4 + 165*x^3 + 176*x^2 - 11*x + 1)
 

\( x^{42} - x^{41} + 21 x^{40} - 18 x^{39} + 248 x^{38} - 191 x^{37} + 1996 x^{36} - 1375 x^{35} + 12088 x^{34} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $42$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 21]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-2281836760183646137444154412268560109828024514076489472840222217265158917203\) \(\medspace = -\,3^{21}\cdot 43^{40}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(62.27\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}43^{20/21}\approx 62.26512592738671$
Ramified primes:   \(3\), \(43\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Gal(K/\Q) }$:  $42$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(129=3\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{129}(1,·)$, $\chi_{129}(4,·)$, $\chi_{129}(10,·)$, $\chi_{129}(11,·)$, $\chi_{129}(13,·)$, $\chi_{129}(14,·)$, $\chi_{129}(16,·)$, $\chi_{129}(17,·)$, $\chi_{129}(23,·)$, $\chi_{129}(25,·)$, $\chi_{129}(31,·)$, $\chi_{129}(35,·)$, $\chi_{129}(38,·)$, $\chi_{129}(40,·)$, $\chi_{129}(41,·)$, $\chi_{129}(44,·)$, $\chi_{129}(47,·)$, $\chi_{129}(49,·)$, $\chi_{129}(52,·)$, $\chi_{129}(53,·)$, $\chi_{129}(56,·)$, $\chi_{129}(58,·)$, $\chi_{129}(59,·)$, $\chi_{129}(64,·)$, $\chi_{129}(67,·)$, $\chi_{129}(68,·)$, $\chi_{129}(74,·)$, $\chi_{129}(79,·)$, $\chi_{129}(83,·)$, $\chi_{129}(92,·)$, $\chi_{129}(95,·)$, $\chi_{129}(97,·)$, $\chi_{129}(100,·)$, $\chi_{129}(101,·)$, $\chi_{129}(103,·)$, $\chi_{129}(107,·)$, $\chi_{129}(109,·)$, $\chi_{129}(110,·)$, $\chi_{129}(121,·)$, $\chi_{129}(122,·)$, $\chi_{129}(124,·)$, $\chi_{129}(127,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{1048576}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $\frac{1}{7}a^{39}+\frac{3}{7}a^{38}-\frac{3}{7}a^{37}-\frac{2}{7}a^{36}-\frac{2}{7}a^{34}+\frac{1}{7}a^{33}+\frac{3}{7}a^{32}-\frac{3}{7}a^{31}-\frac{3}{7}a^{30}+\frac{1}{7}a^{29}+\frac{2}{7}a^{28}-\frac{1}{7}a^{27}+\frac{3}{7}a^{25}+\frac{2}{7}a^{24}+\frac{3}{7}a^{23}+\frac{3}{7}a^{22}-\frac{1}{7}a^{20}+\frac{2}{7}a^{19}-\frac{2}{7}a^{18}+\frac{3}{7}a^{16}+\frac{1}{7}a^{14}+\frac{2}{7}a^{12}+\frac{2}{7}a^{11}-\frac{3}{7}a^{10}-\frac{2}{7}a^{9}+\frac{1}{7}a^{8}-\frac{3}{7}a^{7}+\frac{1}{7}a^{6}+\frac{3}{7}a^{5}-\frac{1}{7}a^{3}+\frac{2}{7}a+\frac{2}{7}$, $\frac{1}{7}a^{40}+\frac{2}{7}a^{38}-\frac{1}{7}a^{36}-\frac{2}{7}a^{35}+\frac{2}{7}a^{32}-\frac{1}{7}a^{31}+\frac{3}{7}a^{30}-\frac{1}{7}a^{29}+\frac{3}{7}a^{27}+\frac{3}{7}a^{26}-\frac{3}{7}a^{24}+\frac{1}{7}a^{23}-\frac{2}{7}a^{22}-\frac{1}{7}a^{21}-\frac{2}{7}a^{20}-\frac{1}{7}a^{19}-\frac{1}{7}a^{18}+\frac{3}{7}a^{17}-\frac{2}{7}a^{16}+\frac{1}{7}a^{15}-\frac{3}{7}a^{14}+\frac{2}{7}a^{13}+\frac{3}{7}a^{12}-\frac{2}{7}a^{11}+\frac{1}{7}a^{8}+\frac{3}{7}a^{7}-\frac{2}{7}a^{5}-\frac{1}{7}a^{4}+\frac{3}{7}a^{3}+\frac{2}{7}a^{2}+\frac{3}{7}a+\frac{1}{7}$, $\frac{1}{72\!\cdots\!51}a^{41}+\frac{11\!\cdots\!77}{72\!\cdots\!51}a^{40}-\frac{20\!\cdots\!28}{72\!\cdots\!51}a^{39}-\frac{17\!\cdots\!53}{72\!\cdots\!51}a^{38}+\frac{27\!\cdots\!39}{72\!\cdots\!51}a^{37}-\frac{31\!\cdots\!43}{72\!\cdots\!51}a^{36}-\frac{21\!\cdots\!49}{72\!\cdots\!51}a^{35}-\frac{25\!\cdots\!27}{72\!\cdots\!51}a^{34}+\frac{20\!\cdots\!18}{72\!\cdots\!51}a^{33}-\frac{44\!\cdots\!05}{10\!\cdots\!93}a^{32}+\frac{33\!\cdots\!37}{72\!\cdots\!51}a^{31}-\frac{26\!\cdots\!51}{72\!\cdots\!51}a^{30}+\frac{28\!\cdots\!78}{10\!\cdots\!93}a^{29}-\frac{24\!\cdots\!19}{72\!\cdots\!51}a^{28}-\frac{30\!\cdots\!03}{72\!\cdots\!51}a^{27}+\frac{30\!\cdots\!58}{72\!\cdots\!51}a^{26}+\frac{35\!\cdots\!45}{72\!\cdots\!51}a^{25}+\frac{10\!\cdots\!85}{72\!\cdots\!51}a^{24}+\frac{10\!\cdots\!89}{72\!\cdots\!51}a^{23}+\frac{21\!\cdots\!59}{72\!\cdots\!51}a^{22}-\frac{14\!\cdots\!04}{72\!\cdots\!51}a^{21}-\frac{19\!\cdots\!99}{72\!\cdots\!51}a^{20}-\frac{16\!\cdots\!34}{72\!\cdots\!51}a^{19}-\frac{16\!\cdots\!25}{72\!\cdots\!51}a^{18}-\frac{18\!\cdots\!48}{10\!\cdots\!93}a^{17}-\frac{63\!\cdots\!36}{72\!\cdots\!51}a^{16}-\frac{15\!\cdots\!87}{10\!\cdots\!93}a^{15}-\frac{21\!\cdots\!67}{72\!\cdots\!51}a^{14}+\frac{24\!\cdots\!63}{72\!\cdots\!51}a^{13}-\frac{20\!\cdots\!39}{72\!\cdots\!51}a^{12}-\frac{16\!\cdots\!98}{10\!\cdots\!93}a^{11}-\frac{32\!\cdots\!64}{72\!\cdots\!51}a^{10}-\frac{29\!\cdots\!82}{72\!\cdots\!51}a^{9}+\frac{37\!\cdots\!64}{72\!\cdots\!51}a^{8}+\frac{14\!\cdots\!22}{10\!\cdots\!93}a^{7}+\frac{14\!\cdots\!80}{72\!\cdots\!51}a^{6}+\frac{30\!\cdots\!22}{72\!\cdots\!51}a^{5}+\frac{31\!\cdots\!12}{10\!\cdots\!93}a^{4}-\frac{19\!\cdots\!81}{72\!\cdots\!51}a^{3}-\frac{21\!\cdots\!71}{72\!\cdots\!51}a^{2}-\frac{18\!\cdots\!87}{72\!\cdots\!51}a+\frac{17\!\cdots\!05}{72\!\cdots\!51}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{179249}$, which has order $179249$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $20$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{597846318319878128399333183551408849018329181957960735727361597582815770032152124649312795518}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{41} + \frac{577795988981124824640471826537711605492341248966838615487646856364007152149949840905813563508}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{40} - \frac{12523178537587947516812830502156715084357390482079938695944660334516818962634935185634908627491}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{39} + \frac{10327789905766012198757042507499584327178405376317620070835925391776762234727449171362399773411}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{38} - \frac{147662872213227124264512137988581527124844737533294717015848649903755231880842002018632627819444}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{37} + \frac{108991870768184441507852223705156087438749259315575733158340341230283701685815424399943288185689}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{36} - \frac{1186617636690075064248609661172441085124190688531330113364009509692405104351806095589232933975246}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{35} + \frac{111375102805111616905501854631029260863277836214372108534324230333680895679820156912350930044046}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{34} - \frac{7176276574924287053599812271284023196147464905146680760728541314953353872536610423679161082439124}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{33} + \frac{4221160879150901804646939813712136497379936687075009069903013512663615416720597701029972823016169}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{32} - \frac{34011511477418845403448077207522982243843768505185106158426861648707904197398150069983905316422735}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{31} + \frac{17781023674052835310520759338772705687574979925532505474480357060781963095965477562536727396195997}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{30} - \frac{129879677482630348884877884041290230672321156455466119130088411633310488526376202928171820221677435}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{29} + \frac{60179736325889069051835690647746638988871685176993040586158996964936122317887829079136553404611482}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{28} - \frac{57805297716058912675009587970845313970740150102783420211008159471640306618917933158412631381711436}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{27} + \frac{164315467651037501807610969364678582841695744738756105417698221112849118163441604031837209901423383}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{26} - \frac{1037065571124766098947732482937786314856872959848482205874011740149350317099192420766903489005127410}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{25} + \frac{366035819258047172876028846879670410850154937281081904461850797769317853456800003178014538578917612}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{24} - \frac{2187889592177705809755854375627617364023773517612498968661432487139276629163602077263084715847620402}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{23} + \frac{659369252784439098192659841567017841912557477168697501627321757118361869969171455976668428224177962}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{22} - \frac{3793196106235633165010830374725964509819479529312004832084433996086105294006468547959656676848141619}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{21} + \frac{962024569509024513988754414666089001557122869243842080863347540602980738195955280856329633989176110}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{20} - \frac{765839771990510755476089042067251560518286807422617016693079298757635162874424850978033121272501719}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{19} + \frac{1109500222460910975382825898067345583300935046258150089650260641538188676003880854101715035688698700}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{18} - \frac{6114702256386711348859284744648636257942738380067592399321399699142231327717363855689927891148129861}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{17} + \frac{1008690123449986259182745059521354430522820886884677060188385532419647924503107571476678285925801845}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{16} - \frac{5527253785388819655300637982495123128662180903789001660199537289907339815704733599169591189090071752}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{15} + \frac{680390699414122176113404773185076021875962600978208565777215128256115672581277393584285885962611535}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{14} - \frac{3879891649855407417856547542274509226366749316361384369483144455003239758556154500009228667010137815}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{13} + \frac{344292991904484865112204774986533908013760816670585986735283535579499305536011253394908546356274047}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{12} - \frac{2041502705469106088064360544147765855494142904361565955059986714144877106013119449820945120753504619}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{11} + \frac{14735190748452567555255661542726614853539489295614533436726856395202867091834533097114007606974213}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{10} - \frac{776039479458341761024115479694784652012709720856973163900366310208593094183999524083856481030081622}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{9} + \frac{22843770188397564722382340739256632224553285769652651612711625117454068806568482849212928259510045}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{8} - \frac{197471240484244062769587273428737177691653362276355366307396018300114334383824412818805983219246281}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{7} - \frac{2894967940651568123738247656452587131682002710003036109813463424300992072517509281661900053153640}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{6} - \frac{31360340777808760321179670174132844208734594973190295847305277271760256007499131289132288512760277}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{5} - \frac{19624106787617821707454577878869029363926440443349242484213444581441251520676985646440768640197}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{4} - \frac{2464881776253411541764160269476787438853051259322567633434722858421402161395445445634484092633078}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{3} - \frac{286967956216437266294491942009933809590950587838751496633549584192917925515681860216927387656964}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{2} - \frac{79508453895139319054498562092581723131050820465764982371314038394671956618707060343264250792079}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a + \frac{4849027870496966572840092730071372039449466830505132381981584709487192027667730038108879054017}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{43\!\cdots\!15}{72\!\cdots\!51}a^{41}-\frac{37\!\cdots\!28}{72\!\cdots\!51}a^{40}+\frac{13\!\cdots\!87}{10\!\cdots\!93}a^{39}-\frac{65\!\cdots\!19}{72\!\cdots\!51}a^{38}+\frac{10\!\cdots\!94}{72\!\cdots\!51}a^{37}-\frac{67\!\cdots\!42}{72\!\cdots\!51}a^{36}+\frac{85\!\cdots\!78}{72\!\cdots\!51}a^{35}-\frac{47\!\cdots\!13}{72\!\cdots\!51}a^{34}+\frac{74\!\cdots\!97}{10\!\cdots\!93}a^{33}-\frac{25\!\cdots\!57}{72\!\cdots\!51}a^{32}+\frac{24\!\cdots\!46}{72\!\cdots\!51}a^{31}-\frac{10\!\cdots\!99}{72\!\cdots\!51}a^{30}+\frac{13\!\cdots\!80}{10\!\cdots\!93}a^{29}-\frac{33\!\cdots\!09}{72\!\cdots\!51}a^{28}+\frac{29\!\cdots\!70}{72\!\cdots\!51}a^{27}-\frac{87\!\cdots\!01}{72\!\cdots\!51}a^{26}+\frac{74\!\cdots\!10}{72\!\cdots\!51}a^{25}-\frac{18\!\cdots\!86}{72\!\cdots\!51}a^{24}+\frac{15\!\cdots\!02}{72\!\cdots\!51}a^{23}-\frac{30\!\cdots\!07}{72\!\cdots\!51}a^{22}+\frac{38\!\cdots\!23}{10\!\cdots\!93}a^{21}-\frac{40\!\cdots\!79}{72\!\cdots\!51}a^{20}+\frac{38\!\cdots\!02}{72\!\cdots\!51}a^{19}-\frac{38\!\cdots\!38}{72\!\cdots\!51}a^{18}+\frac{43\!\cdots\!17}{72\!\cdots\!51}a^{17}-\frac{26\!\cdots\!20}{72\!\cdots\!51}a^{16}+\frac{39\!\cdots\!14}{72\!\cdots\!51}a^{15}-\frac{70\!\cdots\!50}{72\!\cdots\!51}a^{14}+\frac{27\!\cdots\!28}{72\!\cdots\!51}a^{13}+\frac{43\!\cdots\!40}{72\!\cdots\!51}a^{12}+\frac{20\!\cdots\!74}{10\!\cdots\!93}a^{11}+\frac{77\!\cdots\!27}{72\!\cdots\!51}a^{10}+\frac{55\!\cdots\!44}{72\!\cdots\!51}a^{9}+\frac{39\!\cdots\!29}{72\!\cdots\!51}a^{8}+\frac{19\!\cdots\!49}{10\!\cdots\!93}a^{7}+\frac{15\!\cdots\!88}{72\!\cdots\!51}a^{6}+\frac{21\!\cdots\!31}{72\!\cdots\!51}a^{5}+\frac{19\!\cdots\!05}{72\!\cdots\!51}a^{4}+\frac{14\!\cdots\!28}{72\!\cdots\!51}a^{3}+\frac{25\!\cdots\!46}{72\!\cdots\!51}a^{2}+\frac{35\!\cdots\!46}{72\!\cdots\!51}a-\frac{19\!\cdots\!25}{72\!\cdots\!51}$, $\frac{12\!\cdots\!77}{72\!\cdots\!51}a^{41}-\frac{50\!\cdots\!34}{10\!\cdots\!93}a^{40}+\frac{27\!\cdots\!27}{72\!\cdots\!51}a^{39}-\frac{70\!\cdots\!82}{72\!\cdots\!51}a^{38}+\frac{33\!\cdots\!19}{72\!\cdots\!51}a^{37}-\frac{80\!\cdots\!93}{72\!\cdots\!51}a^{36}+\frac{39\!\cdots\!77}{10\!\cdots\!93}a^{35}-\frac{62\!\cdots\!86}{72\!\cdots\!51}a^{34}+\frac{17\!\cdots\!41}{72\!\cdots\!51}a^{33}-\frac{36\!\cdots\!21}{72\!\cdots\!51}a^{32}+\frac{82\!\cdots\!16}{72\!\cdots\!51}a^{31}-\frac{16\!\cdots\!30}{72\!\cdots\!51}a^{30}+\frac{31\!\cdots\!58}{72\!\cdots\!51}a^{29}-\frac{62\!\cdots\!02}{72\!\cdots\!51}a^{28}+\frac{14\!\cdots\!83}{10\!\cdots\!93}a^{27}-\frac{27\!\cdots\!17}{10\!\cdots\!93}a^{26}+\frac{25\!\cdots\!66}{72\!\cdots\!51}a^{25}-\frac{67\!\cdots\!45}{10\!\cdots\!93}a^{24}+\frac{77\!\cdots\!36}{10\!\cdots\!93}a^{23}-\frac{97\!\cdots\!43}{72\!\cdots\!51}a^{22}+\frac{93\!\cdots\!91}{72\!\cdots\!51}a^{21}-\frac{16\!\cdots\!88}{72\!\cdots\!51}a^{20}+\frac{13\!\cdots\!35}{72\!\cdots\!51}a^{19}-\frac{22\!\cdots\!90}{72\!\cdots\!51}a^{18}+\frac{14\!\cdots\!73}{72\!\cdots\!51}a^{17}-\frac{24\!\cdots\!88}{72\!\cdots\!51}a^{16}+\frac{12\!\cdots\!81}{72\!\cdots\!51}a^{15}-\frac{21\!\cdots\!67}{72\!\cdots\!51}a^{14}+\frac{85\!\cdots\!28}{72\!\cdots\!51}a^{13}-\frac{14\!\cdots\!75}{72\!\cdots\!51}a^{12}+\frac{42\!\cdots\!85}{72\!\cdots\!51}a^{11}-\frac{74\!\cdots\!04}{72\!\cdots\!51}a^{10}+\frac{14\!\cdots\!73}{72\!\cdots\!51}a^{9}-\frac{26\!\cdots\!92}{72\!\cdots\!51}a^{8}+\frac{37\!\cdots\!45}{72\!\cdots\!51}a^{7}-\frac{60\!\cdots\!17}{72\!\cdots\!51}a^{6}+\frac{55\!\cdots\!51}{72\!\cdots\!51}a^{5}-\frac{79\!\cdots\!97}{72\!\cdots\!51}a^{4}+\frac{13\!\cdots\!67}{72\!\cdots\!51}a^{3}-\frac{72\!\cdots\!23}{72\!\cdots\!51}a^{2}+\frac{12\!\cdots\!08}{10\!\cdots\!93}a-\frac{61\!\cdots\!85}{72\!\cdots\!51}$, $\frac{65\!\cdots\!74}{72\!\cdots\!51}a^{41}-\frac{67\!\cdots\!92}{72\!\cdots\!51}a^{40}+\frac{13\!\cdots\!13}{72\!\cdots\!51}a^{39}-\frac{12\!\cdots\!47}{72\!\cdots\!51}a^{38}+\frac{16\!\cdots\!52}{72\!\cdots\!51}a^{37}-\frac{12\!\cdots\!53}{72\!\cdots\!51}a^{36}+\frac{13\!\cdots\!16}{72\!\cdots\!51}a^{35}-\frac{13\!\cdots\!65}{10\!\cdots\!93}a^{34}+\frac{79\!\cdots\!55}{72\!\cdots\!51}a^{33}-\frac{50\!\cdots\!62}{72\!\cdots\!51}a^{32}+\frac{53\!\cdots\!71}{10\!\cdots\!93}a^{31}-\frac{21\!\cdots\!43}{72\!\cdots\!51}a^{30}+\frac{14\!\cdots\!10}{72\!\cdots\!51}a^{29}-\frac{74\!\cdots\!41}{72\!\cdots\!51}a^{28}+\frac{45\!\cdots\!30}{72\!\cdots\!51}a^{27}-\frac{20\!\cdots\!64}{72\!\cdots\!51}a^{26}+\frac{11\!\cdots\!64}{72\!\cdots\!51}a^{25}-\frac{46\!\cdots\!73}{72\!\cdots\!51}a^{24}+\frac{24\!\cdots\!72}{72\!\cdots\!51}a^{23}-\frac{12\!\cdots\!34}{10\!\cdots\!93}a^{22}+\frac{42\!\cdots\!00}{72\!\cdots\!51}a^{21}-\frac{18\!\cdots\!21}{10\!\cdots\!93}a^{20}+\frac{59\!\cdots\!34}{72\!\cdots\!51}a^{19}-\frac{21\!\cdots\!37}{10\!\cdots\!93}a^{18}+\frac{97\!\cdots\!79}{10\!\cdots\!93}a^{17}-\frac{14\!\cdots\!94}{72\!\cdots\!51}a^{16}+\frac{88\!\cdots\!65}{10\!\cdots\!93}a^{15}-\frac{15\!\cdots\!92}{10\!\cdots\!93}a^{14}+\frac{43\!\cdots\!86}{72\!\cdots\!51}a^{13}-\frac{85\!\cdots\!10}{10\!\cdots\!93}a^{12}+\frac{22\!\cdots\!02}{72\!\cdots\!51}a^{11}-\frac{32\!\cdots\!61}{10\!\cdots\!93}a^{10}+\frac{87\!\cdots\!79}{72\!\cdots\!51}a^{9}-\frac{66\!\cdots\!59}{72\!\cdots\!51}a^{8}+\frac{22\!\cdots\!58}{72\!\cdots\!51}a^{7}-\frac{68\!\cdots\!53}{72\!\cdots\!51}a^{6}+\frac{51\!\cdots\!33}{10\!\cdots\!93}a^{5}-\frac{20\!\cdots\!94}{10\!\cdots\!93}a^{4}+\frac{30\!\cdots\!86}{72\!\cdots\!51}a^{3}+\frac{21\!\cdots\!41}{72\!\cdots\!51}a^{2}+\frac{10\!\cdots\!18}{72\!\cdots\!51}a-\frac{66\!\cdots\!94}{72\!\cdots\!51}$, $\frac{38\!\cdots\!77}{10\!\cdots\!93}a^{41}-\frac{25\!\cdots\!98}{72\!\cdots\!51}a^{40}+\frac{57\!\cdots\!73}{72\!\cdots\!51}a^{39}-\frac{46\!\cdots\!73}{72\!\cdots\!51}a^{38}+\frac{67\!\cdots\!61}{72\!\cdots\!51}a^{37}-\frac{49\!\cdots\!58}{72\!\cdots\!51}a^{36}+\frac{54\!\cdots\!72}{72\!\cdots\!51}a^{35}-\frac{35\!\cdots\!94}{72\!\cdots\!51}a^{34}+\frac{33\!\cdots\!68}{72\!\cdots\!51}a^{33}-\frac{19\!\cdots\!98}{72\!\cdots\!51}a^{32}+\frac{22\!\cdots\!24}{10\!\cdots\!93}a^{31}-\frac{80\!\cdots\!61}{72\!\cdots\!51}a^{30}+\frac{60\!\cdots\!54}{72\!\cdots\!51}a^{29}-\frac{27\!\cdots\!72}{72\!\cdots\!51}a^{28}+\frac{19\!\cdots\!45}{72\!\cdots\!51}a^{27}-\frac{75\!\cdots\!73}{72\!\cdots\!51}a^{26}+\frac{49\!\cdots\!86}{72\!\cdots\!51}a^{25}-\frac{16\!\cdots\!41}{72\!\cdots\!51}a^{24}+\frac{14\!\cdots\!27}{10\!\cdots\!93}a^{23}-\frac{30\!\cdots\!21}{72\!\cdots\!51}a^{22}+\frac{18\!\cdots\!96}{72\!\cdots\!51}a^{21}-\frac{45\!\cdots\!67}{72\!\cdots\!51}a^{20}+\frac{26\!\cdots\!90}{72\!\cdots\!51}a^{19}-\frac{53\!\cdots\!21}{72\!\cdots\!51}a^{18}+\frac{30\!\cdots\!38}{72\!\cdots\!51}a^{17}-\frac{49\!\cdots\!66}{72\!\cdots\!51}a^{16}+\frac{27\!\cdots\!89}{72\!\cdots\!51}a^{15}-\frac{35\!\cdots\!45}{72\!\cdots\!51}a^{14}+\frac{20\!\cdots\!55}{72\!\cdots\!51}a^{13}-\frac{27\!\cdots\!24}{10\!\cdots\!93}a^{12}+\frac{10\!\cdots\!53}{72\!\cdots\!51}a^{11}-\frac{73\!\cdots\!78}{72\!\cdots\!51}a^{10}+\frac{43\!\cdots\!23}{72\!\cdots\!51}a^{9}-\frac{23\!\cdots\!84}{72\!\cdots\!51}a^{8}+\frac{11\!\cdots\!56}{72\!\cdots\!51}a^{7}-\frac{43\!\cdots\!08}{72\!\cdots\!51}a^{6}+\frac{20\!\cdots\!72}{72\!\cdots\!51}a^{5}-\frac{13\!\cdots\!10}{72\!\cdots\!51}a^{4}+\frac{18\!\cdots\!59}{72\!\cdots\!51}a^{3}-\frac{16\!\cdots\!51}{72\!\cdots\!51}a^{2}+\frac{10\!\cdots\!89}{10\!\cdots\!93}a-\frac{44\!\cdots\!27}{72\!\cdots\!51}$, $\frac{79\!\cdots\!26}{72\!\cdots\!51}a^{41}-\frac{86\!\cdots\!58}{72\!\cdots\!51}a^{40}+\frac{17\!\cdots\!23}{72\!\cdots\!51}a^{39}-\frac{16\!\cdots\!88}{72\!\cdots\!51}a^{38}+\frac{20\!\cdots\!86}{72\!\cdots\!51}a^{37}-\frac{17\!\cdots\!49}{72\!\cdots\!51}a^{36}+\frac{16\!\cdots\!64}{72\!\cdots\!51}a^{35}-\frac{12\!\cdots\!03}{72\!\cdots\!51}a^{34}+\frac{10\!\cdots\!09}{72\!\cdots\!51}a^{33}-\frac{72\!\cdots\!54}{72\!\cdots\!51}a^{32}+\frac{49\!\cdots\!12}{72\!\cdots\!51}a^{31}-\frac{31\!\cdots\!35}{72\!\cdots\!51}a^{30}+\frac{19\!\cdots\!49}{72\!\cdots\!51}a^{29}-\frac{11\!\cdots\!98}{72\!\cdots\!51}a^{28}+\frac{87\!\cdots\!85}{10\!\cdots\!93}a^{27}-\frac{32\!\cdots\!86}{72\!\cdots\!51}a^{26}+\frac{22\!\cdots\!27}{10\!\cdots\!93}a^{25}-\frac{76\!\cdots\!49}{72\!\cdots\!51}a^{24}+\frac{34\!\cdots\!61}{72\!\cdots\!51}a^{23}-\frac{14\!\cdots\!86}{72\!\cdots\!51}a^{22}+\frac{62\!\cdots\!10}{72\!\cdots\!51}a^{21}-\frac{23\!\cdots\!41}{72\!\cdots\!51}a^{20}+\frac{91\!\cdots\!97}{72\!\cdots\!51}a^{19}-\frac{31\!\cdots\!64}{72\!\cdots\!51}a^{18}+\frac{10\!\cdots\!45}{72\!\cdots\!51}a^{17}-\frac{33\!\cdots\!92}{72\!\cdots\!51}a^{16}+\frac{10\!\cdots\!52}{72\!\cdots\!51}a^{15}-\frac{28\!\cdots\!48}{72\!\cdots\!51}a^{14}+\frac{78\!\cdots\!59}{72\!\cdots\!51}a^{13}-\frac{19\!\cdots\!18}{72\!\cdots\!51}a^{12}+\frac{45\!\cdots\!36}{72\!\cdots\!51}a^{11}-\frac{10\!\cdots\!37}{72\!\cdots\!51}a^{10}+\frac{19\!\cdots\!55}{72\!\cdots\!51}a^{9}-\frac{42\!\cdots\!99}{72\!\cdots\!51}a^{8}+\frac{60\!\cdots\!62}{72\!\cdots\!51}a^{7}-\frac{12\!\cdots\!49}{72\!\cdots\!51}a^{6}+\frac{12\!\cdots\!03}{72\!\cdots\!51}a^{5}-\frac{24\!\cdots\!51}{72\!\cdots\!51}a^{4}+\frac{13\!\cdots\!57}{72\!\cdots\!51}a^{3}-\frac{30\!\cdots\!73}{72\!\cdots\!51}a^{2}+\frac{60\!\cdots\!85}{72\!\cdots\!51}a-\frac{39\!\cdots\!10}{72\!\cdots\!51}$, $\frac{20\!\cdots\!66}{72\!\cdots\!51}a^{41}-\frac{27\!\cdots\!22}{72\!\cdots\!51}a^{40}+\frac{43\!\cdots\!88}{72\!\cdots\!51}a^{39}-\frac{51\!\cdots\!47}{72\!\cdots\!51}a^{38}+\frac{52\!\cdots\!25}{72\!\cdots\!51}a^{37}-\frac{56\!\cdots\!90}{72\!\cdots\!51}a^{36}+\frac{42\!\cdots\!53}{72\!\cdots\!51}a^{35}-\frac{42\!\cdots\!99}{72\!\cdots\!51}a^{34}+\frac{25\!\cdots\!39}{72\!\cdots\!51}a^{33}-\frac{23\!\cdots\!48}{72\!\cdots\!51}a^{32}+\frac{12\!\cdots\!21}{72\!\cdots\!51}a^{31}-\frac{10\!\cdots\!36}{72\!\cdots\!51}a^{30}+\frac{47\!\cdots\!92}{72\!\cdots\!51}a^{29}-\frac{37\!\cdots\!18}{72\!\cdots\!51}a^{28}+\frac{14\!\cdots\!52}{72\!\cdots\!51}a^{27}-\frac{10\!\cdots\!43}{72\!\cdots\!51}a^{26}+\frac{38\!\cdots\!97}{72\!\cdots\!51}a^{25}-\frac{26\!\cdots\!91}{72\!\cdots\!51}a^{24}+\frac{82\!\cdots\!22}{72\!\cdots\!51}a^{23}-\frac{73\!\cdots\!50}{10\!\cdots\!93}a^{22}+\frac{14\!\cdots\!61}{72\!\cdots\!51}a^{21}-\frac{82\!\cdots\!42}{72\!\cdots\!51}a^{20}+\frac{20\!\cdots\!79}{72\!\cdots\!51}a^{19}-\frac{15\!\cdots\!46}{10\!\cdots\!93}a^{18}+\frac{23\!\cdots\!88}{72\!\cdots\!51}a^{17}-\frac{11\!\cdots\!16}{72\!\cdots\!51}a^{16}+\frac{21\!\cdots\!70}{72\!\cdots\!51}a^{15}-\frac{13\!\cdots\!21}{10\!\cdots\!93}a^{14}+\frac{15\!\cdots\!72}{72\!\cdots\!51}a^{13}-\frac{62\!\cdots\!38}{72\!\cdots\!51}a^{12}+\frac{83\!\cdots\!11}{72\!\cdots\!51}a^{11}-\frac{29\!\cdots\!65}{72\!\cdots\!51}a^{10}+\frac{32\!\cdots\!93}{72\!\cdots\!51}a^{9}-\frac{10\!\cdots\!78}{72\!\cdots\!51}a^{8}+\frac{88\!\cdots\!09}{72\!\cdots\!51}a^{7}-\frac{23\!\cdots\!80}{72\!\cdots\!51}a^{6}+\frac{21\!\cdots\!58}{10\!\cdots\!93}a^{5}-\frac{36\!\cdots\!36}{72\!\cdots\!51}a^{4}+\frac{16\!\cdots\!80}{72\!\cdots\!51}a^{3}-\frac{18\!\cdots\!09}{72\!\cdots\!51}a^{2}+\frac{76\!\cdots\!22}{72\!\cdots\!51}a-\frac{50\!\cdots\!60}{72\!\cdots\!51}$, $\frac{11\!\cdots\!41}{10\!\cdots\!93}a^{41}-\frac{74\!\cdots\!45}{72\!\cdots\!51}a^{40}+\frac{23\!\cdots\!64}{10\!\cdots\!93}a^{39}-\frac{13\!\cdots\!87}{72\!\cdots\!51}a^{38}+\frac{27\!\cdots\!35}{10\!\cdots\!93}a^{37}-\frac{14\!\cdots\!37}{72\!\cdots\!51}a^{36}+\frac{15\!\cdots\!19}{72\!\cdots\!51}a^{35}-\frac{14\!\cdots\!48}{10\!\cdots\!93}a^{34}+\frac{13\!\cdots\!20}{10\!\cdots\!93}a^{33}-\frac{55\!\cdots\!74}{72\!\cdots\!51}a^{32}+\frac{44\!\cdots\!76}{72\!\cdots\!51}a^{31}-\frac{23\!\cdots\!49}{72\!\cdots\!51}a^{30}+\frac{16\!\cdots\!36}{72\!\cdots\!51}a^{29}-\frac{11\!\cdots\!23}{10\!\cdots\!93}a^{28}+\frac{53\!\cdots\!00}{72\!\cdots\!51}a^{27}-\frac{21\!\cdots\!62}{72\!\cdots\!51}a^{26}+\frac{19\!\cdots\!45}{10\!\cdots\!93}a^{25}-\frac{48\!\cdots\!95}{72\!\cdots\!51}a^{24}+\frac{28\!\cdots\!38}{72\!\cdots\!51}a^{23}-\frac{88\!\cdots\!96}{72\!\cdots\!51}a^{22}+\frac{50\!\cdots\!07}{72\!\cdots\!51}a^{21}-\frac{12\!\cdots\!58}{72\!\cdots\!51}a^{20}+\frac{71\!\cdots\!61}{72\!\cdots\!51}a^{19}-\frac{15\!\cdots\!28}{72\!\cdots\!51}a^{18}+\frac{81\!\cdots\!84}{72\!\cdots\!51}a^{17}-\frac{14\!\cdots\!29}{72\!\cdots\!51}a^{16}+\frac{74\!\cdots\!71}{72\!\cdots\!51}a^{15}-\frac{98\!\cdots\!46}{72\!\cdots\!51}a^{14}+\frac{52\!\cdots\!52}{72\!\cdots\!51}a^{13}-\frac{52\!\cdots\!15}{72\!\cdots\!51}a^{12}+\frac{28\!\cdots\!94}{72\!\cdots\!51}a^{11}-\frac{26\!\cdots\!29}{10\!\cdots\!93}a^{10}+\frac{15\!\cdots\!30}{10\!\cdots\!93}a^{9}-\frac{53\!\cdots\!76}{72\!\cdots\!51}a^{8}+\frac{28\!\cdots\!81}{72\!\cdots\!51}a^{7}-\frac{71\!\cdots\!77}{10\!\cdots\!93}a^{6}+\frac{47\!\cdots\!86}{72\!\cdots\!51}a^{5}-\frac{18\!\cdots\!54}{72\!\cdots\!51}a^{4}+\frac{41\!\cdots\!25}{72\!\cdots\!51}a^{3}+\frac{46\!\cdots\!23}{72\!\cdots\!51}a^{2}+\frac{14\!\cdots\!49}{72\!\cdots\!51}a-\frac{90\!\cdots\!84}{72\!\cdots\!51}$, $\frac{18\!\cdots\!40}{72\!\cdots\!51}a^{41}-\frac{17\!\cdots\!12}{72\!\cdots\!51}a^{40}+\frac{38\!\cdots\!11}{72\!\cdots\!51}a^{39}-\frac{31\!\cdots\!36}{72\!\cdots\!51}a^{38}+\frac{45\!\cdots\!75}{72\!\cdots\!51}a^{37}-\frac{33\!\cdots\!07}{72\!\cdots\!51}a^{36}+\frac{36\!\cdots\!15}{72\!\cdots\!51}a^{35}-\frac{34\!\cdots\!43}{10\!\cdots\!93}a^{34}+\frac{22\!\cdots\!25}{72\!\cdots\!51}a^{33}-\frac{12\!\cdots\!41}{72\!\cdots\!51}a^{32}+\frac{10\!\cdots\!13}{72\!\cdots\!51}a^{31}-\frac{54\!\cdots\!51}{72\!\cdots\!51}a^{30}+\frac{39\!\cdots\!78}{72\!\cdots\!51}a^{29}-\frac{18\!\cdots\!43}{72\!\cdots\!51}a^{28}+\frac{12\!\cdots\!79}{72\!\cdots\!51}a^{27}-\frac{50\!\cdots\!72}{72\!\cdots\!51}a^{26}+\frac{31\!\cdots\!10}{72\!\cdots\!51}a^{25}-\frac{11\!\cdots\!97}{72\!\cdots\!51}a^{24}+\frac{96\!\cdots\!76}{10\!\cdots\!93}a^{23}-\frac{20\!\cdots\!06}{72\!\cdots\!51}a^{22}+\frac{11\!\cdots\!34}{72\!\cdots\!51}a^{21}-\frac{29\!\cdots\!45}{72\!\cdots\!51}a^{20}+\frac{16\!\cdots\!83}{72\!\cdots\!51}a^{19}-\frac{33\!\cdots\!79}{72\!\cdots\!51}a^{18}+\frac{18\!\cdots\!20}{72\!\cdots\!51}a^{17}-\frac{30\!\cdots\!61}{72\!\cdots\!51}a^{16}+\frac{17\!\cdots\!03}{72\!\cdots\!51}a^{15}-\frac{20\!\cdots\!92}{72\!\cdots\!51}a^{14}+\frac{17\!\cdots\!00}{10\!\cdots\!93}a^{13}-\frac{10\!\cdots\!63}{72\!\cdots\!51}a^{12}+\frac{63\!\cdots\!43}{72\!\cdots\!51}a^{11}-\frac{45\!\cdots\!44}{10\!\cdots\!93}a^{10}+\frac{24\!\cdots\!97}{72\!\cdots\!51}a^{9}-\frac{72\!\cdots\!05}{72\!\cdots\!51}a^{8}+\frac{62\!\cdots\!02}{72\!\cdots\!51}a^{7}+\frac{71\!\cdots\!50}{72\!\cdots\!51}a^{6}+\frac{99\!\cdots\!26}{72\!\cdots\!51}a^{5}-\frac{47\!\cdots\!82}{72\!\cdots\!51}a^{4}+\frac{79\!\cdots\!11}{72\!\cdots\!51}a^{3}+\frac{91\!\cdots\!09}{10\!\cdots\!93}a^{2}+\frac{37\!\cdots\!96}{10\!\cdots\!93}a-\frac{16\!\cdots\!73}{72\!\cdots\!51}$, $\frac{59\!\cdots\!18}{72\!\cdots\!51}a^{41}-\frac{57\!\cdots\!08}{72\!\cdots\!51}a^{40}+\frac{12\!\cdots\!91}{72\!\cdots\!51}a^{39}-\frac{10\!\cdots\!11}{72\!\cdots\!51}a^{38}+\frac{14\!\cdots\!44}{72\!\cdots\!51}a^{37}-\frac{10\!\cdots\!89}{72\!\cdots\!51}a^{36}+\frac{11\!\cdots\!46}{72\!\cdots\!51}a^{35}-\frac{11\!\cdots\!46}{10\!\cdots\!93}a^{34}+\frac{71\!\cdots\!24}{72\!\cdots\!51}a^{33}-\frac{42\!\cdots\!69}{72\!\cdots\!51}a^{32}+\frac{34\!\cdots\!35}{72\!\cdots\!51}a^{31}-\frac{17\!\cdots\!97}{72\!\cdots\!51}a^{30}+\frac{12\!\cdots\!35}{72\!\cdots\!51}a^{29}-\frac{60\!\cdots\!82}{72\!\cdots\!51}a^{28}+\frac{57\!\cdots\!36}{10\!\cdots\!93}a^{27}-\frac{16\!\cdots\!83}{72\!\cdots\!51}a^{26}+\frac{10\!\cdots\!10}{72\!\cdots\!51}a^{25}-\frac{36\!\cdots\!12}{72\!\cdots\!51}a^{24}+\frac{21\!\cdots\!02}{72\!\cdots\!51}a^{23}-\frac{65\!\cdots\!62}{72\!\cdots\!51}a^{22}+\frac{37\!\cdots\!19}{72\!\cdots\!51}a^{21}-\frac{96\!\cdots\!10}{72\!\cdots\!51}a^{20}+\frac{76\!\cdots\!19}{10\!\cdots\!93}a^{19}-\frac{11\!\cdots\!00}{72\!\cdots\!51}a^{18}+\frac{61\!\cdots\!61}{72\!\cdots\!51}a^{17}-\frac{10\!\cdots\!45}{72\!\cdots\!51}a^{16}+\frac{55\!\cdots\!52}{72\!\cdots\!51}a^{15}-\frac{68\!\cdots\!35}{72\!\cdots\!51}a^{14}+\frac{38\!\cdots\!15}{72\!\cdots\!51}a^{13}-\frac{34\!\cdots\!47}{72\!\cdots\!51}a^{12}+\frac{20\!\cdots\!19}{72\!\cdots\!51}a^{11}-\frac{14\!\cdots\!13}{10\!\cdots\!93}a^{10}+\frac{77\!\cdots\!22}{72\!\cdots\!51}a^{9}-\frac{22\!\cdots\!45}{72\!\cdots\!51}a^{8}+\frac{19\!\cdots\!81}{72\!\cdots\!51}a^{7}+\frac{28\!\cdots\!40}{72\!\cdots\!51}a^{6}+\frac{31\!\cdots\!77}{72\!\cdots\!51}a^{5}+\frac{19\!\cdots\!97}{72\!\cdots\!51}a^{4}+\frac{24\!\cdots\!78}{72\!\cdots\!51}a^{3}+\frac{28\!\cdots\!64}{72\!\cdots\!51}a^{2}+\frac{72\!\cdots\!28}{72\!\cdots\!51}a+\frac{24\!\cdots\!34}{72\!\cdots\!51}$, $\frac{87\!\cdots\!57}{72\!\cdots\!51}a^{41}-\frac{83\!\cdots\!06}{72\!\cdots\!51}a^{40}+\frac{18\!\cdots\!64}{72\!\cdots\!51}a^{39}-\frac{14\!\cdots\!84}{72\!\cdots\!51}a^{38}+\frac{21\!\cdots\!05}{72\!\cdots\!51}a^{37}-\frac{22\!\cdots\!21}{10\!\cdots\!93}a^{36}+\frac{17\!\cdots\!18}{72\!\cdots\!51}a^{35}-\frac{11\!\cdots\!16}{72\!\cdots\!51}a^{34}+\frac{10\!\cdots\!92}{72\!\cdots\!51}a^{33}-\frac{61\!\cdots\!67}{72\!\cdots\!51}a^{32}+\frac{49\!\cdots\!03}{72\!\cdots\!51}a^{31}-\frac{25\!\cdots\!58}{72\!\cdots\!51}a^{30}+\frac{19\!\cdots\!89}{72\!\cdots\!51}a^{29}-\frac{87\!\cdots\!54}{72\!\cdots\!51}a^{28}+\frac{59\!\cdots\!97}{72\!\cdots\!51}a^{27}-\frac{23\!\cdots\!56}{72\!\cdots\!51}a^{26}+\frac{21\!\cdots\!28}{10\!\cdots\!93}a^{25}-\frac{53\!\cdots\!53}{72\!\cdots\!51}a^{24}+\frac{32\!\cdots\!91}{72\!\cdots\!51}a^{23}-\frac{96\!\cdots\!83}{72\!\cdots\!51}a^{22}+\frac{56\!\cdots\!15}{72\!\cdots\!51}a^{21}-\frac{14\!\cdots\!77}{72\!\cdots\!51}a^{20}+\frac{79\!\cdots\!23}{72\!\cdots\!51}a^{19}-\frac{16\!\cdots\!21}{72\!\cdots\!51}a^{18}+\frac{13\!\cdots\!57}{10\!\cdots\!93}a^{17}-\frac{15\!\cdots\!11}{72\!\cdots\!51}a^{16}+\frac{11\!\cdots\!63}{10\!\cdots\!93}a^{15}-\frac{10\!\cdots\!80}{72\!\cdots\!51}a^{14}+\frac{58\!\cdots\!70}{72\!\cdots\!51}a^{13}-\frac{53\!\cdots\!15}{72\!\cdots\!51}a^{12}+\frac{31\!\cdots\!72}{72\!\cdots\!51}a^{11}-\frac{17\!\cdots\!69}{72\!\cdots\!51}a^{10}+\frac{12\!\cdots\!45}{72\!\cdots\!51}a^{9}-\frac{66\!\cdots\!47}{10\!\cdots\!93}a^{8}+\frac{31\!\cdots\!37}{72\!\cdots\!51}a^{7}-\frac{14\!\cdots\!68}{72\!\cdots\!51}a^{6}+\frac{51\!\cdots\!49}{72\!\cdots\!51}a^{5}-\frac{18\!\cdots\!59}{10\!\cdots\!93}a^{4}+\frac{43\!\cdots\!37}{72\!\cdots\!51}a^{3}+\frac{11\!\cdots\!13}{72\!\cdots\!51}a^{2}+\frac{14\!\cdots\!02}{72\!\cdots\!51}a-\frac{92\!\cdots\!44}{72\!\cdots\!51}$, $\frac{47\!\cdots\!05}{72\!\cdots\!51}a^{41}-\frac{53\!\cdots\!20}{72\!\cdots\!51}a^{40}+\frac{10\!\cdots\!61}{72\!\cdots\!51}a^{39}-\frac{14\!\cdots\!60}{10\!\cdots\!93}a^{38}+\frac{12\!\cdots\!86}{72\!\cdots\!51}a^{37}-\frac{10\!\cdots\!48}{72\!\cdots\!51}a^{36}+\frac{97\!\cdots\!25}{72\!\cdots\!51}a^{35}-\frac{77\!\cdots\!93}{72\!\cdots\!51}a^{34}+\frac{59\!\cdots\!07}{72\!\cdots\!51}a^{33}-\frac{43\!\cdots\!46}{72\!\cdots\!51}a^{32}+\frac{28\!\cdots\!89}{72\!\cdots\!51}a^{31}-\frac{18\!\cdots\!97}{72\!\cdots\!51}a^{30}+\frac{10\!\cdots\!46}{72\!\cdots\!51}a^{29}-\frac{65\!\cdots\!90}{72\!\cdots\!51}a^{28}+\frac{33\!\cdots\!97}{72\!\cdots\!51}a^{27}-\frac{18\!\cdots\!16}{72\!\cdots\!51}a^{26}+\frac{87\!\cdots\!83}{72\!\cdots\!51}a^{25}-\frac{43\!\cdots\!32}{72\!\cdots\!51}a^{24}+\frac{18\!\cdots\!11}{72\!\cdots\!51}a^{23}-\frac{82\!\cdots\!71}{72\!\cdots\!51}a^{22}+\frac{32\!\cdots\!57}{72\!\cdots\!51}a^{21}-\frac{18\!\cdots\!87}{10\!\cdots\!93}a^{20}+\frac{46\!\cdots\!69}{72\!\cdots\!51}a^{19}-\frac{16\!\cdots\!43}{72\!\cdots\!51}a^{18}+\frac{53\!\cdots\!26}{72\!\cdots\!51}a^{17}-\frac{16\!\cdots\!82}{72\!\cdots\!51}a^{16}+\frac{49\!\cdots\!59}{72\!\cdots\!51}a^{15}-\frac{13\!\cdots\!92}{72\!\cdots\!51}a^{14}+\frac{35\!\cdots\!27}{72\!\cdots\!51}a^{13}-\frac{81\!\cdots\!06}{72\!\cdots\!51}a^{12}+\frac{19\!\cdots\!64}{72\!\cdots\!51}a^{11}-\frac{37\!\cdots\!43}{72\!\cdots\!51}a^{10}+\frac{10\!\cdots\!88}{10\!\cdots\!93}a^{9}-\frac{12\!\cdots\!62}{72\!\cdots\!51}a^{8}+\frac{20\!\cdots\!65}{72\!\cdots\!51}a^{7}-\frac{27\!\cdots\!88}{72\!\cdots\!51}a^{6}+\frac{35\!\cdots\!78}{72\!\cdots\!51}a^{5}-\frac{49\!\cdots\!46}{72\!\cdots\!51}a^{4}+\frac{35\!\cdots\!39}{72\!\cdots\!51}a^{3}-\frac{34\!\cdots\!60}{72\!\cdots\!51}a^{2}+\frac{14\!\cdots\!45}{72\!\cdots\!51}a-\frac{94\!\cdots\!87}{72\!\cdots\!51}$, $\frac{20\!\cdots\!48}{72\!\cdots\!51}a^{41}-\frac{22\!\cdots\!68}{72\!\cdots\!51}a^{40}+\frac{43\!\cdots\!33}{72\!\cdots\!51}a^{39}-\frac{57\!\cdots\!11}{10\!\cdots\!93}a^{38}+\frac{73\!\cdots\!42}{10\!\cdots\!93}a^{37}-\frac{43\!\cdots\!21}{72\!\cdots\!51}a^{36}+\frac{41\!\cdots\!57}{72\!\cdots\!51}a^{35}-\frac{31\!\cdots\!91}{72\!\cdots\!51}a^{34}+\frac{24\!\cdots\!57}{72\!\cdots\!51}a^{33}-\frac{17\!\cdots\!13}{72\!\cdots\!51}a^{32}+\frac{16\!\cdots\!48}{10\!\cdots\!93}a^{31}-\frac{73\!\cdots\!56}{72\!\cdots\!51}a^{30}+\frac{44\!\cdots\!98}{72\!\cdots\!51}a^{29}-\frac{36\!\cdots\!10}{10\!\cdots\!93}a^{28}+\frac{13\!\cdots\!87}{72\!\cdots\!51}a^{27}-\frac{71\!\cdots\!87}{72\!\cdots\!51}a^{26}+\frac{35\!\cdots\!71}{72\!\cdots\!51}a^{25}-\frac{23\!\cdots\!50}{10\!\cdots\!93}a^{24}+\frac{74\!\cdots\!62}{72\!\cdots\!51}a^{23}-\frac{30\!\cdots\!39}{72\!\cdots\!51}a^{22}+\frac{12\!\cdots\!48}{72\!\cdots\!51}a^{21}-\frac{46\!\cdots\!15}{72\!\cdots\!51}a^{20}+\frac{18\!\cdots\!78}{72\!\cdots\!51}a^{19}-\frac{57\!\cdots\!54}{72\!\cdots\!51}a^{18}+\frac{20\!\cdots\!10}{72\!\cdots\!51}a^{17}-\frac{56\!\cdots\!54}{72\!\cdots\!51}a^{16}+\frac{18\!\cdots\!71}{72\!\cdots\!51}a^{15}-\frac{43\!\cdots\!76}{72\!\cdots\!51}a^{14}+\frac{12\!\cdots\!98}{72\!\cdots\!51}a^{13}-\frac{36\!\cdots\!34}{10\!\cdots\!93}a^{12}+\frac{65\!\cdots\!89}{72\!\cdots\!51}a^{11}-\frac{11\!\cdots\!83}{72\!\cdots\!51}a^{10}+\frac{23\!\cdots\!28}{72\!\cdots\!51}a^{9}-\frac{37\!\cdots\!03}{72\!\cdots\!51}a^{8}+\frac{57\!\cdots\!00}{72\!\cdots\!51}a^{7}-\frac{10\!\cdots\!16}{10\!\cdots\!93}a^{6}+\frac{82\!\cdots\!44}{72\!\cdots\!51}a^{5}-\frac{16\!\cdots\!44}{72\!\cdots\!51}a^{4}+\frac{54\!\cdots\!99}{72\!\cdots\!51}a^{3}-\frac{10\!\cdots\!24}{72\!\cdots\!51}a^{2}+\frac{71\!\cdots\!24}{72\!\cdots\!51}a-\frac{35\!\cdots\!05}{72\!\cdots\!51}$, $\frac{53\!\cdots\!75}{72\!\cdots\!51}a^{41}-\frac{47\!\cdots\!73}{72\!\cdots\!51}a^{40}+\frac{11\!\cdots\!93}{72\!\cdots\!51}a^{39}-\frac{84\!\cdots\!96}{72\!\cdots\!51}a^{38}+\frac{13\!\cdots\!99}{72\!\cdots\!51}a^{37}-\frac{87\!\cdots\!70}{72\!\cdots\!51}a^{36}+\frac{10\!\cdots\!44}{72\!\cdots\!51}a^{35}-\frac{61\!\cdots\!79}{72\!\cdots\!51}a^{34}+\frac{63\!\cdots\!43}{72\!\cdots\!51}a^{33}-\frac{47\!\cdots\!64}{10\!\cdots\!93}a^{32}+\frac{42\!\cdots\!25}{10\!\cdots\!93}a^{31}-\frac{13\!\cdots\!08}{72\!\cdots\!51}a^{30}+\frac{11\!\cdots\!68}{72\!\cdots\!51}a^{29}-\frac{45\!\cdots\!88}{72\!\cdots\!51}a^{28}+\frac{50\!\cdots\!42}{10\!\cdots\!93}a^{27}-\frac{12\!\cdots\!26}{72\!\cdots\!51}a^{26}+\frac{90\!\cdots\!17}{72\!\cdots\!51}a^{25}-\frac{26\!\cdots\!96}{72\!\cdots\!51}a^{24}+\frac{19\!\cdots\!16}{72\!\cdots\!51}a^{23}-\frac{45\!\cdots\!42}{72\!\cdots\!51}a^{22}+\frac{47\!\cdots\!97}{10\!\cdots\!93}a^{21}-\frac{62\!\cdots\!84}{72\!\cdots\!51}a^{20}+\frac{46\!\cdots\!07}{72\!\cdots\!51}a^{19}-\frac{66\!\cdots\!89}{72\!\cdots\!51}a^{18}+\frac{53\!\cdots\!37}{72\!\cdots\!51}a^{17}-\frac{53\!\cdots\!57}{72\!\cdots\!51}a^{16}+\frac{48\!\cdots\!64}{72\!\cdots\!51}a^{15}-\frac{28\!\cdots\!15}{72\!\cdots\!51}a^{14}+\frac{33\!\cdots\!24}{72\!\cdots\!51}a^{13}-\frac{12\!\cdots\!17}{10\!\cdots\!93}a^{12}+\frac{17\!\cdots\!82}{72\!\cdots\!51}a^{11}+\frac{21\!\cdots\!12}{72\!\cdots\!51}a^{10}+\frac{95\!\cdots\!67}{10\!\cdots\!93}a^{9}+\frac{21\!\cdots\!28}{72\!\cdots\!51}a^{8}+\frac{16\!\cdots\!07}{72\!\cdots\!51}a^{7}+\frac{12\!\cdots\!22}{72\!\cdots\!51}a^{6}+\frac{26\!\cdots\!41}{72\!\cdots\!51}a^{5}+\frac{14\!\cdots\!18}{72\!\cdots\!51}a^{4}+\frac{18\!\cdots\!11}{72\!\cdots\!51}a^{3}+\frac{29\!\cdots\!59}{72\!\cdots\!51}a^{2}+\frac{52\!\cdots\!25}{72\!\cdots\!51}a-\frac{30\!\cdots\!44}{72\!\cdots\!51}$, $\frac{27\!\cdots\!35}{72\!\cdots\!51}a^{41}-\frac{31\!\cdots\!09}{72\!\cdots\!51}a^{40}+\frac{58\!\cdots\!19}{72\!\cdots\!51}a^{39}-\frac{58\!\cdots\!72}{72\!\cdots\!51}a^{38}+\frac{69\!\cdots\!20}{72\!\cdots\!51}a^{37}-\frac{63\!\cdots\!14}{72\!\cdots\!51}a^{36}+\frac{56\!\cdots\!53}{72\!\cdots\!51}a^{35}-\frac{46\!\cdots\!93}{72\!\cdots\!51}a^{34}+\frac{34\!\cdots\!22}{72\!\cdots\!51}a^{33}-\frac{25\!\cdots\!79}{72\!\cdots\!51}a^{32}+\frac{16\!\cdots\!08}{72\!\cdots\!51}a^{31}-\frac{11\!\cdots\!66}{72\!\cdots\!51}a^{30}+\frac{62\!\cdots\!54}{72\!\cdots\!51}a^{29}-\frac{39\!\cdots\!25}{72\!\cdots\!51}a^{28}+\frac{19\!\cdots\!54}{72\!\cdots\!51}a^{27}-\frac{11\!\cdots\!43}{72\!\cdots\!51}a^{26}+\frac{50\!\cdots\!58}{72\!\cdots\!51}a^{25}-\frac{26\!\cdots\!70}{72\!\cdots\!51}a^{24}+\frac{10\!\cdots\!86}{72\!\cdots\!51}a^{23}-\frac{51\!\cdots\!77}{72\!\cdots\!51}a^{22}+\frac{18\!\cdots\!76}{72\!\cdots\!51}a^{21}-\frac{80\!\cdots\!58}{72\!\cdots\!51}a^{20}+\frac{26\!\cdots\!03}{72\!\cdots\!51}a^{19}-\frac{10\!\cdots\!91}{72\!\cdots\!51}a^{18}+\frac{43\!\cdots\!24}{10\!\cdots\!93}a^{17}-\frac{10\!\cdots\!52}{72\!\cdots\!51}a^{16}+\frac{39\!\cdots\!09}{10\!\cdots\!93}a^{15}-\frac{87\!\cdots\!82}{72\!\cdots\!51}a^{14}+\frac{19\!\cdots\!52}{72\!\cdots\!51}a^{13}-\frac{56\!\cdots\!53}{72\!\cdots\!51}a^{12}+\frac{10\!\cdots\!61}{72\!\cdots\!51}a^{11}-\frac{27\!\cdots\!59}{72\!\cdots\!51}a^{10}+\frac{39\!\cdots\!23}{72\!\cdots\!51}a^{9}-\frac{99\!\cdots\!03}{72\!\cdots\!51}a^{8}+\frac{10\!\cdots\!69}{72\!\cdots\!51}a^{7}-\frac{22\!\cdots\!87}{72\!\cdots\!51}a^{6}+\frac{15\!\cdots\!26}{72\!\cdots\!51}a^{5}-\frac{57\!\cdots\!56}{10\!\cdots\!93}a^{4}+\frac{10\!\cdots\!74}{72\!\cdots\!51}a^{3}-\frac{22\!\cdots\!61}{72\!\cdots\!51}a^{2}+\frac{15\!\cdots\!29}{72\!\cdots\!51}a-\frac{14\!\cdots\!62}{72\!\cdots\!51}$, $\frac{21\!\cdots\!95}{72\!\cdots\!51}a^{41}-\frac{20\!\cdots\!17}{72\!\cdots\!51}a^{40}+\frac{45\!\cdots\!54}{72\!\cdots\!51}a^{39}-\frac{51\!\cdots\!77}{10\!\cdots\!93}a^{38}+\frac{53\!\cdots\!86}{72\!\cdots\!51}a^{37}-\frac{53\!\cdots\!14}{10\!\cdots\!93}a^{36}+\frac{43\!\cdots\!28}{72\!\cdots\!51}a^{35}-\frac{26\!\cdots\!31}{72\!\cdots\!51}a^{34}+\frac{26\!\cdots\!81}{72\!\cdots\!51}a^{33}-\frac{14\!\cdots\!29}{72\!\cdots\!51}a^{32}+\frac{12\!\cdots\!38}{72\!\cdots\!51}a^{31}-\frac{60\!\cdots\!56}{72\!\cdots\!51}a^{30}+\frac{47\!\cdots\!02}{72\!\cdots\!51}a^{29}-\frac{20\!\cdots\!19}{72\!\cdots\!51}a^{28}+\frac{14\!\cdots\!08}{72\!\cdots\!51}a^{27}-\frac{54\!\cdots\!32}{72\!\cdots\!51}a^{26}+\frac{37\!\cdots\!94}{72\!\cdots\!51}a^{25}-\frac{11\!\cdots\!18}{72\!\cdots\!51}a^{24}+\frac{79\!\cdots\!97}{72\!\cdots\!51}a^{23}-\frac{21\!\cdots\!80}{72\!\cdots\!51}a^{22}+\frac{13\!\cdots\!83}{72\!\cdots\!51}a^{21}-\frac{30\!\cdots\!46}{72\!\cdots\!51}a^{20}+\frac{19\!\cdots\!49}{72\!\cdots\!51}a^{19}-\frac{33\!\cdots\!01}{72\!\cdots\!51}a^{18}+\frac{22\!\cdots\!24}{72\!\cdots\!51}a^{17}-\frac{28\!\cdots\!32}{72\!\cdots\!51}a^{16}+\frac{20\!\cdots\!31}{72\!\cdots\!51}a^{15}-\frac{17\!\cdots\!43}{72\!\cdots\!51}a^{14}+\frac{14\!\cdots\!03}{72\!\cdots\!51}a^{13}-\frac{74\!\cdots\!83}{72\!\cdots\!51}a^{12}+\frac{76\!\cdots\!04}{72\!\cdots\!51}a^{11}-\frac{10\!\cdots\!42}{72\!\cdots\!51}a^{10}+\frac{29\!\cdots\!23}{72\!\cdots\!51}a^{9}+\frac{23\!\cdots\!68}{72\!\cdots\!51}a^{8}+\frac{75\!\cdots\!81}{72\!\cdots\!51}a^{7}+\frac{38\!\cdots\!67}{72\!\cdots\!51}a^{6}+\frac{12\!\cdots\!60}{72\!\cdots\!51}a^{5}+\frac{48\!\cdots\!83}{72\!\cdots\!51}a^{4}+\frac{10\!\cdots\!73}{72\!\cdots\!51}a^{3}+\frac{12\!\cdots\!69}{72\!\cdots\!51}a^{2}+\frac{36\!\cdots\!28}{72\!\cdots\!51}a+\frac{10\!\cdots\!42}{72\!\cdots\!51}$, $\frac{26\!\cdots\!80}{72\!\cdots\!51}a^{41}-\frac{38\!\cdots\!87}{72\!\cdots\!51}a^{40}+\frac{56\!\cdots\!09}{72\!\cdots\!51}a^{39}-\frac{72\!\cdots\!19}{72\!\cdots\!51}a^{38}+\frac{67\!\cdots\!38}{72\!\cdots\!51}a^{37}-\frac{80\!\cdots\!35}{72\!\cdots\!51}a^{36}+\frac{55\!\cdots\!57}{72\!\cdots\!51}a^{35}-\frac{85\!\cdots\!34}{10\!\cdots\!93}a^{34}+\frac{33\!\cdots\!80}{72\!\cdots\!51}a^{33}-\frac{34\!\cdots\!40}{72\!\cdots\!51}a^{32}+\frac{23\!\cdots\!00}{10\!\cdots\!93}a^{31}-\frac{15\!\cdots\!17}{72\!\cdots\!51}a^{30}+\frac{62\!\cdots\!08}{72\!\cdots\!51}a^{29}-\frac{54\!\cdots\!70}{72\!\cdots\!51}a^{28}+\frac{19\!\cdots\!31}{72\!\cdots\!51}a^{27}-\frac{16\!\cdots\!77}{72\!\cdots\!51}a^{26}+\frac{50\!\cdots\!45}{72\!\cdots\!51}a^{25}-\frac{38\!\cdots\!21}{72\!\cdots\!51}a^{24}+\frac{10\!\cdots\!52}{72\!\cdots\!51}a^{23}-\frac{10\!\cdots\!73}{10\!\cdots\!93}a^{22}+\frac{18\!\cdots\!73}{72\!\cdots\!51}a^{21}-\frac{17\!\cdots\!55}{10\!\cdots\!93}a^{20}+\frac{26\!\cdots\!79}{72\!\cdots\!51}a^{19}-\frac{23\!\cdots\!51}{10\!\cdots\!93}a^{18}+\frac{44\!\cdots\!07}{10\!\cdots\!93}a^{17}-\frac{17\!\cdots\!42}{72\!\cdots\!51}a^{16}+\frac{40\!\cdots\!92}{10\!\cdots\!93}a^{15}-\frac{21\!\cdots\!92}{10\!\cdots\!93}a^{14}+\frac{20\!\cdots\!68}{72\!\cdots\!51}a^{13}-\frac{13\!\cdots\!45}{10\!\cdots\!93}a^{12}+\frac{10\!\cdots\!60}{72\!\cdots\!51}a^{11}-\frac{67\!\cdots\!33}{10\!\cdots\!93}a^{10}+\frac{42\!\cdots\!16}{72\!\cdots\!51}a^{9}-\frac{16\!\cdots\!55}{72\!\cdots\!51}a^{8}+\frac{11\!\cdots\!13}{72\!\cdots\!51}a^{7}-\frac{38\!\cdots\!27}{72\!\cdots\!51}a^{6}+\frac{26\!\cdots\!16}{10\!\cdots\!93}a^{5}-\frac{83\!\cdots\!58}{10\!\cdots\!93}a^{4}+\frac{18\!\cdots\!06}{72\!\cdots\!51}a^{3}-\frac{30\!\cdots\!84}{72\!\cdots\!51}a^{2}+\frac{20\!\cdots\!57}{72\!\cdots\!51}a-\frac{75\!\cdots\!14}{72\!\cdots\!51}$, $\frac{29\!\cdots\!03}{72\!\cdots\!51}a^{41}-\frac{41\!\cdots\!84}{72\!\cdots\!51}a^{40}+\frac{63\!\cdots\!79}{72\!\cdots\!51}a^{39}-\frac{77\!\cdots\!08}{72\!\cdots\!51}a^{38}+\frac{75\!\cdots\!74}{72\!\cdots\!51}a^{37}-\frac{85\!\cdots\!84}{72\!\cdots\!51}a^{36}+\frac{61\!\cdots\!60}{72\!\cdots\!51}a^{35}-\frac{63\!\cdots\!79}{72\!\cdots\!51}a^{34}+\frac{37\!\cdots\!21}{72\!\cdots\!51}a^{33}-\frac{36\!\cdots\!95}{72\!\cdots\!51}a^{32}+\frac{17\!\cdots\!32}{72\!\cdots\!51}a^{31}-\frac{16\!\cdots\!16}{72\!\cdots\!51}a^{30}+\frac{68\!\cdots\!52}{72\!\cdots\!51}a^{29}-\frac{57\!\cdots\!10}{72\!\cdots\!51}a^{28}+\frac{21\!\cdots\!85}{72\!\cdots\!51}a^{27}-\frac{16\!\cdots\!18}{72\!\cdots\!51}a^{26}+\frac{55\!\cdots\!45}{72\!\cdots\!51}a^{25}-\frac{58\!\cdots\!05}{10\!\cdots\!93}a^{24}+\frac{11\!\cdots\!00}{72\!\cdots\!51}a^{23}-\frac{80\!\cdots\!80}{72\!\cdots\!51}a^{22}+\frac{20\!\cdots\!75}{72\!\cdots\!51}a^{21}-\frac{13\!\cdots\!22}{72\!\cdots\!51}a^{20}+\frac{29\!\cdots\!06}{72\!\cdots\!51}a^{19}-\frac{17\!\cdots\!73}{72\!\cdots\!51}a^{18}+\frac{48\!\cdots\!12}{10\!\cdots\!93}a^{17}-\frac{26\!\cdots\!32}{10\!\cdots\!93}a^{16}+\frac{44\!\cdots\!89}{10\!\cdots\!93}a^{15}-\frac{15\!\cdots\!40}{72\!\cdots\!51}a^{14}+\frac{22\!\cdots\!23}{72\!\cdots\!51}a^{13}-\frac{10\!\cdots\!72}{72\!\cdots\!51}a^{12}+\frac{11\!\cdots\!18}{72\!\cdots\!51}a^{11}-\frac{49\!\cdots\!22}{72\!\cdots\!51}a^{10}+\frac{66\!\cdots\!36}{10\!\cdots\!93}a^{9}-\frac{17\!\cdots\!88}{72\!\cdots\!51}a^{8}+\frac{12\!\cdots\!29}{72\!\cdots\!51}a^{7}-\frac{40\!\cdots\!37}{72\!\cdots\!51}a^{6}+\frac{20\!\cdots\!44}{72\!\cdots\!51}a^{5}-\frac{88\!\cdots\!19}{10\!\cdots\!93}a^{4}+\frac{27\!\cdots\!65}{10\!\cdots\!93}a^{3}-\frac{32\!\cdots\!03}{72\!\cdots\!51}a^{2}+\frac{22\!\cdots\!71}{72\!\cdots\!51}a+\frac{58\!\cdots\!26}{72\!\cdots\!51}$, $\frac{10\!\cdots\!10}{72\!\cdots\!51}a^{41}-\frac{15\!\cdots\!64}{72\!\cdots\!51}a^{40}+\frac{21\!\cdots\!98}{72\!\cdots\!51}a^{39}-\frac{30\!\cdots\!04}{72\!\cdots\!51}a^{38}+\frac{25\!\cdots\!82}{72\!\cdots\!51}a^{37}-\frac{33\!\cdots\!19}{72\!\cdots\!51}a^{36}+\frac{21\!\cdots\!95}{72\!\cdots\!51}a^{35}-\frac{25\!\cdots\!50}{72\!\cdots\!51}a^{34}+\frac{12\!\cdots\!15}{72\!\cdots\!51}a^{33}-\frac{14\!\cdots\!61}{72\!\cdots\!51}a^{32}+\frac{62\!\cdots\!03}{72\!\cdots\!51}a^{31}-\frac{64\!\cdots\!23}{72\!\cdots\!51}a^{30}+\frac{24\!\cdots\!95}{72\!\cdots\!51}a^{29}-\frac{23\!\cdots\!92}{72\!\cdots\!51}a^{28}+\frac{10\!\cdots\!80}{10\!\cdots\!93}a^{27}-\frac{68\!\cdots\!38}{72\!\cdots\!51}a^{26}+\frac{27\!\cdots\!96}{10\!\cdots\!93}a^{25}-\frac{16\!\cdots\!11}{72\!\cdots\!51}a^{24}+\frac{41\!\cdots\!45}{72\!\cdots\!51}a^{23}-\frac{33\!\cdots\!67}{72\!\cdots\!51}a^{22}+\frac{73\!\cdots\!74}{72\!\cdots\!51}a^{21}-\frac{54\!\cdots\!08}{72\!\cdots\!51}a^{20}+\frac{10\!\cdots\!39}{72\!\cdots\!51}a^{19}-\frac{72\!\cdots\!52}{72\!\cdots\!51}a^{18}+\frac{12\!\cdots\!41}{72\!\cdots\!51}a^{17}-\frac{77\!\cdots\!38}{72\!\cdots\!51}a^{16}+\frac{11\!\cdots\!30}{72\!\cdots\!51}a^{15}-\frac{65\!\cdots\!16}{72\!\cdots\!51}a^{14}+\frac{78\!\cdots\!06}{72\!\cdots\!51}a^{13}-\frac{43\!\cdots\!33}{72\!\cdots\!51}a^{12}+\frac{42\!\cdots\!64}{72\!\cdots\!51}a^{11}-\frac{20\!\cdots\!82}{72\!\cdots\!51}a^{10}+\frac{16\!\cdots\!90}{72\!\cdots\!51}a^{9}-\frac{74\!\cdots\!13}{72\!\cdots\!51}a^{8}+\frac{45\!\cdots\!05}{72\!\cdots\!51}a^{7}-\frac{16\!\cdots\!80}{72\!\cdots\!51}a^{6}+\frac{75\!\cdots\!47}{72\!\cdots\!51}a^{5}-\frac{24\!\cdots\!14}{72\!\cdots\!51}a^{4}+\frac{90\!\cdots\!43}{72\!\cdots\!51}a^{3}-\frac{12\!\cdots\!80}{72\!\cdots\!51}a^{2}+\frac{86\!\cdots\!98}{72\!\cdots\!51}a-\frac{29\!\cdots\!87}{72\!\cdots\!51}$, $\frac{23\!\cdots\!96}{72\!\cdots\!51}a^{41}-\frac{87\!\cdots\!16}{72\!\cdots\!51}a^{40}+\frac{58\!\cdots\!40}{72\!\cdots\!51}a^{39}-\frac{17\!\cdots\!46}{72\!\cdots\!51}a^{38}+\frac{74\!\cdots\!96}{72\!\cdots\!51}a^{37}-\frac{29\!\cdots\!07}{10\!\cdots\!93}a^{36}+\frac{64\!\cdots\!57}{72\!\cdots\!51}a^{35}-\frac{16\!\cdots\!98}{72\!\cdots\!51}a^{34}+\frac{41\!\cdots\!53}{72\!\cdots\!51}a^{33}-\frac{97\!\cdots\!41}{72\!\cdots\!51}a^{32}+\frac{20\!\cdots\!87}{72\!\cdots\!51}a^{31}-\frac{45\!\cdots\!90}{72\!\cdots\!51}a^{30}+\frac{12\!\cdots\!19}{10\!\cdots\!93}a^{29}-\frac{17\!\cdots\!58}{72\!\cdots\!51}a^{28}+\frac{27\!\cdots\!39}{72\!\cdots\!51}a^{27}-\frac{53\!\cdots\!66}{72\!\cdots\!51}a^{26}+\frac{75\!\cdots\!02}{72\!\cdots\!51}a^{25}-\frac{13\!\cdots\!40}{72\!\cdots\!51}a^{24}+\frac{24\!\cdots\!05}{10\!\cdots\!93}a^{23}-\frac{28\!\cdots\!15}{72\!\cdots\!51}a^{22}+\frac{30\!\cdots\!09}{72\!\cdots\!51}a^{21}-\frac{48\!\cdots\!28}{72\!\cdots\!51}a^{20}+\frac{46\!\cdots\!75}{72\!\cdots\!51}a^{19}-\frac{67\!\cdots\!13}{72\!\cdots\!51}a^{18}+\frac{57\!\cdots\!57}{72\!\cdots\!51}a^{17}-\frac{76\!\cdots\!26}{72\!\cdots\!51}a^{16}+\frac{57\!\cdots\!83}{72\!\cdots\!51}a^{15}-\frac{68\!\cdots\!66}{72\!\cdots\!51}a^{14}+\frac{44\!\cdots\!44}{72\!\cdots\!51}a^{13}-\frac{47\!\cdots\!18}{72\!\cdots\!51}a^{12}+\frac{38\!\cdots\!26}{10\!\cdots\!93}a^{11}-\frac{24\!\cdots\!14}{72\!\cdots\!51}a^{10}+\frac{16\!\cdots\!79}{10\!\cdots\!93}a^{9}-\frac{90\!\cdots\!25}{72\!\cdots\!51}a^{8}+\frac{53\!\cdots\!19}{10\!\cdots\!93}a^{7}-\frac{21\!\cdots\!74}{72\!\cdots\!51}a^{6}+\frac{71\!\cdots\!91}{72\!\cdots\!51}a^{5}-\frac{28\!\cdots\!74}{72\!\cdots\!51}a^{4}+\frac{84\!\cdots\!09}{72\!\cdots\!51}a^{3}-\frac{14\!\cdots\!08}{72\!\cdots\!51}a^{2}+\frac{13\!\cdots\!22}{10\!\cdots\!93}a+\frac{29\!\cdots\!16}{72\!\cdots\!51}$, $\frac{23\!\cdots\!49}{10\!\cdots\!93}a^{41}-\frac{17\!\cdots\!19}{72\!\cdots\!51}a^{40}+\frac{33\!\cdots\!65}{72\!\cdots\!51}a^{39}-\frac{31\!\cdots\!88}{72\!\cdots\!51}a^{38}+\frac{40\!\cdots\!54}{72\!\cdots\!51}a^{37}-\frac{33\!\cdots\!59}{72\!\cdots\!51}a^{36}+\frac{32\!\cdots\!14}{72\!\cdots\!51}a^{35}-\frac{24\!\cdots\!27}{72\!\cdots\!51}a^{34}+\frac{19\!\cdots\!55}{72\!\cdots\!51}a^{33}-\frac{13\!\cdots\!16}{72\!\cdots\!51}a^{32}+\frac{13\!\cdots\!59}{10\!\cdots\!93}a^{31}-\frac{57\!\cdots\!57}{72\!\cdots\!51}a^{30}+\frac{35\!\cdots\!81}{72\!\cdots\!51}a^{29}-\frac{19\!\cdots\!91}{72\!\cdots\!51}a^{28}+\frac{10\!\cdots\!24}{72\!\cdots\!51}a^{27}-\frac{55\!\cdots\!67}{72\!\cdots\!51}a^{26}+\frac{27\!\cdots\!20}{72\!\cdots\!51}a^{25}-\frac{12\!\cdots\!98}{72\!\cdots\!51}a^{24}+\frac{83\!\cdots\!43}{10\!\cdots\!93}a^{23}-\frac{23\!\cdots\!70}{72\!\cdots\!51}a^{22}+\frac{10\!\cdots\!16}{72\!\cdots\!51}a^{21}-\frac{36\!\cdots\!32}{72\!\cdots\!51}a^{20}+\frac{14\!\cdots\!92}{72\!\cdots\!51}a^{19}-\frac{44\!\cdots\!63}{72\!\cdots\!51}a^{18}+\frac{16\!\cdots\!73}{72\!\cdots\!51}a^{17}-\frac{44\!\cdots\!68}{72\!\cdots\!51}a^{16}+\frac{14\!\cdots\!01}{72\!\cdots\!51}a^{15}-\frac{33\!\cdots\!44}{72\!\cdots\!51}a^{14}+\frac{99\!\cdots\!60}{72\!\cdots\!51}a^{13}-\frac{29\!\cdots\!68}{10\!\cdots\!93}a^{12}+\frac{51\!\cdots\!35}{72\!\cdots\!51}a^{11}-\frac{87\!\cdots\!49}{72\!\cdots\!51}a^{10}+\frac{18\!\cdots\!19}{72\!\cdots\!51}a^{9}-\frac{30\!\cdots\!18}{72\!\cdots\!51}a^{8}+\frac{45\!\cdots\!28}{72\!\cdots\!51}a^{7}-\frac{57\!\cdots\!91}{72\!\cdots\!51}a^{6}+\frac{65\!\cdots\!69}{72\!\cdots\!51}a^{5}-\frac{13\!\cdots\!42}{72\!\cdots\!51}a^{4}+\frac{43\!\cdots\!97}{72\!\cdots\!51}a^{3}-\frac{81\!\cdots\!69}{72\!\cdots\!51}a^{2}+\frac{80\!\cdots\!65}{10\!\cdots\!93}a-\frac{14\!\cdots\!18}{72\!\cdots\!51}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2748021948787771.5 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{21}\cdot 2748021948787771.5 \cdot 179249}{6\cdot\sqrt{2281836760183646137444154412268560109828024514076489472840222217265158917203}}\cr\approx \mathstrut & 0.0993026041253754 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^42 - x^41 + 21*x^40 - 18*x^39 + 248*x^38 - 191*x^37 + 1996*x^36 - 1375*x^35 + 12088*x^34 - 7495*x^33 + 57373*x^32 - 31825*x^31 + 219409*x^30 - 108700*x^29 + 684645*x^28 - 300153*x^27 + 1757705*x^26 - 677756*x^25 + 3715466*x^24 - 1242500*x^23 + 6455978*x^22 - 1853597*x^21 + 9148985*x^20 - 2205194*x^19 + 10469894*x^18 - 2090336*x^17 + 9505112*x^16 - 1507895*x^15 + 6709547*x^14 - 839645*x^13 + 3559478*x^12 - 314951*x^11 + 1368367*x^10 - 93808*x^9 + 355278*x^8 - 10362*x^7 + 58036*x^6 - 2497*x^5 + 4950*x^4 + 165*x^3 + 176*x^2 - 11*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^42 - x^41 + 21*x^40 - 18*x^39 + 248*x^38 - 191*x^37 + 1996*x^36 - 1375*x^35 + 12088*x^34 - 7495*x^33 + 57373*x^32 - 31825*x^31 + 219409*x^30 - 108700*x^29 + 684645*x^28 - 300153*x^27 + 1757705*x^26 - 677756*x^25 + 3715466*x^24 - 1242500*x^23 + 6455978*x^22 - 1853597*x^21 + 9148985*x^20 - 2205194*x^19 + 10469894*x^18 - 2090336*x^17 + 9505112*x^16 - 1507895*x^15 + 6709547*x^14 - 839645*x^13 + 3559478*x^12 - 314951*x^11 + 1368367*x^10 - 93808*x^9 + 355278*x^8 - 10362*x^7 + 58036*x^6 - 2497*x^5 + 4950*x^4 + 165*x^3 + 176*x^2 - 11*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^42 - x^41 + 21*x^40 - 18*x^39 + 248*x^38 - 191*x^37 + 1996*x^36 - 1375*x^35 + 12088*x^34 - 7495*x^33 + 57373*x^32 - 31825*x^31 + 219409*x^30 - 108700*x^29 + 684645*x^28 - 300153*x^27 + 1757705*x^26 - 677756*x^25 + 3715466*x^24 - 1242500*x^23 + 6455978*x^22 - 1853597*x^21 + 9148985*x^20 - 2205194*x^19 + 10469894*x^18 - 2090336*x^17 + 9505112*x^16 - 1507895*x^15 + 6709547*x^14 - 839645*x^13 + 3559478*x^12 - 314951*x^11 + 1368367*x^10 - 93808*x^9 + 355278*x^8 - 10362*x^7 + 58036*x^6 - 2497*x^5 + 4950*x^4 + 165*x^3 + 176*x^2 - 11*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^42 - x^41 + 21*x^40 - 18*x^39 + 248*x^38 - 191*x^37 + 1996*x^36 - 1375*x^35 + 12088*x^34 - 7495*x^33 + 57373*x^32 - 31825*x^31 + 219409*x^30 - 108700*x^29 + 684645*x^28 - 300153*x^27 + 1757705*x^26 - 677756*x^25 + 3715466*x^24 - 1242500*x^23 + 6455978*x^22 - 1853597*x^21 + 9148985*x^20 - 2205194*x^19 + 10469894*x^18 - 2090336*x^17 + 9505112*x^16 - 1507895*x^15 + 6709547*x^14 - 839645*x^13 + 3559478*x^12 - 314951*x^11 + 1368367*x^10 - 93808*x^9 + 355278*x^8 - 10362*x^7 + 58036*x^6 - 2497*x^5 + 4950*x^4 + 165*x^3 + 176*x^2 - 11*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{42}$ (as 42T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 42
The 42 conjugacy class representatives for $C_{42}$
Character table for $C_{42}$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.3.1849.1, 6.0.92307627.1, 7.7.6321363049.1, 14.0.87391712553613254588987.1, \(\Q(\zeta_{43})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.14.0.1}{14} }^{3}$ R $42$ ${\href{/padicField/7.3.0.1}{3} }^{14}$ ${\href{/padicField/11.14.0.1}{14} }^{3}$ $21^{2}$ $42$ $21^{2}$ $42$ $42$ $21^{2}$ ${\href{/padicField/37.3.0.1}{3} }^{14}$ ${\href{/padicField/41.14.0.1}{14} }^{3}$ R ${\href{/padicField/47.14.0.1}{14} }^{3}$ $42$ ${\href{/padicField/59.14.0.1}{14} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $42$$2$$21$$21$
\(43\) Copy content Toggle raw display 43.21.20.1$x^{21} + 43$$21$$1$$20$$C_{21}$$[\ ]_{21}$
43.21.20.1$x^{21} + 43$$21$$1$$20$$C_{21}$$[\ ]_{21}$