Properties

Label 42.42.412...472.1
Degree $42$
Signature $[42, 0]$
Discriminant $4.125\times 10^{79}$
Root discriminant \(78.63\)
Ramified primes $2,43$
Class number not computed
Class group not computed
Galois group $C_{42}$ (as 42T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^42 - 43*x^40 + 860*x^38 - 10621*x^36 + 90687*x^34 - 567987*x^32 + 2701776*x^30 - 9970840*x^28 + 28915436*x^26 - 66335412*x^24 + 120609840*x^22 - 173376645*x^20 + 195747825*x^18 - 171655785*x^16 + 115000920*x^14 - 57500460*x^12 + 20764055*x^10 - 5167525*x^8 + 826804*x^6 - 76153*x^4 + 3311*x^2 - 43)
 
gp: K = bnfinit(y^42 - 43*y^40 + 860*y^38 - 10621*y^36 + 90687*y^34 - 567987*y^32 + 2701776*y^30 - 9970840*y^28 + 28915436*y^26 - 66335412*y^24 + 120609840*y^22 - 173376645*y^20 + 195747825*y^18 - 171655785*y^16 + 115000920*y^14 - 57500460*y^12 + 20764055*y^10 - 5167525*y^8 + 826804*y^6 - 76153*y^4 + 3311*y^2 - 43, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^42 - 43*x^40 + 860*x^38 - 10621*x^36 + 90687*x^34 - 567987*x^32 + 2701776*x^30 - 9970840*x^28 + 28915436*x^26 - 66335412*x^24 + 120609840*x^22 - 173376645*x^20 + 195747825*x^18 - 171655785*x^16 + 115000920*x^14 - 57500460*x^12 + 20764055*x^10 - 5167525*x^8 + 826804*x^6 - 76153*x^4 + 3311*x^2 - 43);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^42 - 43*x^40 + 860*x^38 - 10621*x^36 + 90687*x^34 - 567987*x^32 + 2701776*x^30 - 9970840*x^28 + 28915436*x^26 - 66335412*x^24 + 120609840*x^22 - 173376645*x^20 + 195747825*x^18 - 171655785*x^16 + 115000920*x^14 - 57500460*x^12 + 20764055*x^10 - 5167525*x^8 + 826804*x^6 - 76153*x^4 + 3311*x^2 - 43)
 

\( x^{42} - 43 x^{40} + 860 x^{38} - 10621 x^{36} + 90687 x^{34} - 567987 x^{32} + 2701776 x^{30} + \cdots - 43 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $42$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[42, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(41254041074227118944013302420247071185885898029927512658248841159725538158313472\) \(\medspace = 2^{42}\cdot 43^{41}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(78.63\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 43^{41/42}\approx 78.63327159054276$
Ramified primes:   \(2\), \(43\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{43}) \)
$\card{ \Gal(K/\Q) }$:  $42$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(172=2^{2}\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{172}(1,·)$, $\chi_{172}(3,·)$, $\chi_{172}(133,·)$, $\chi_{172}(7,·)$, $\chi_{172}(9,·)$, $\chi_{172}(13,·)$, $\chi_{172}(115,·)$, $\chi_{172}(17,·)$, $\chi_{172}(19,·)$, $\chi_{172}(21,·)$, $\chi_{172}(151,·)$, $\chi_{172}(25,·)$, $\chi_{172}(155,·)$, $\chi_{172}(159,·)$, $\chi_{172}(27,·)$, $\chi_{172}(165,·)$, $\chi_{172}(39,·)$, $\chi_{172}(41,·)$, $\chi_{172}(171,·)$, $\chi_{172}(49,·)$, $\chi_{172}(51,·)$, $\chi_{172}(53,·)$, $\chi_{172}(55,·)$, $\chi_{172}(57,·)$, $\chi_{172}(63,·)$, $\chi_{172}(71,·)$, $\chi_{172}(75,·)$, $\chi_{172}(81,·)$, $\chi_{172}(163,·)$, $\chi_{172}(169,·)$, $\chi_{172}(91,·)$, $\chi_{172}(97,·)$, $\chi_{172}(131,·)$, $\chi_{172}(101,·)$, $\chi_{172}(145,·)$, $\chi_{172}(109,·)$, $\chi_{172}(147,·)$, $\chi_{172}(117,·)$, $\chi_{172}(119,·)$, $\chi_{172}(153,·)$, $\chi_{172}(121,·)$, $\chi_{172}(123,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $41$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^42 - 43*x^40 + 860*x^38 - 10621*x^36 + 90687*x^34 - 567987*x^32 + 2701776*x^30 - 9970840*x^28 + 28915436*x^26 - 66335412*x^24 + 120609840*x^22 - 173376645*x^20 + 195747825*x^18 - 171655785*x^16 + 115000920*x^14 - 57500460*x^12 + 20764055*x^10 - 5167525*x^8 + 826804*x^6 - 76153*x^4 + 3311*x^2 - 43)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^42 - 43*x^40 + 860*x^38 - 10621*x^36 + 90687*x^34 - 567987*x^32 + 2701776*x^30 - 9970840*x^28 + 28915436*x^26 - 66335412*x^24 + 120609840*x^22 - 173376645*x^20 + 195747825*x^18 - 171655785*x^16 + 115000920*x^14 - 57500460*x^12 + 20764055*x^10 - 5167525*x^8 + 826804*x^6 - 76153*x^4 + 3311*x^2 - 43, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^42 - 43*x^40 + 860*x^38 - 10621*x^36 + 90687*x^34 - 567987*x^32 + 2701776*x^30 - 9970840*x^28 + 28915436*x^26 - 66335412*x^24 + 120609840*x^22 - 173376645*x^20 + 195747825*x^18 - 171655785*x^16 + 115000920*x^14 - 57500460*x^12 + 20764055*x^10 - 5167525*x^8 + 826804*x^6 - 76153*x^4 + 3311*x^2 - 43);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^42 - 43*x^40 + 860*x^38 - 10621*x^36 + 90687*x^34 - 567987*x^32 + 2701776*x^30 - 9970840*x^28 + 28915436*x^26 - 66335412*x^24 + 120609840*x^22 - 173376645*x^20 + 195747825*x^18 - 171655785*x^16 + 115000920*x^14 - 57500460*x^12 + 20764055*x^10 - 5167525*x^8 + 826804*x^6 - 76153*x^4 + 3311*x^2 - 43);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{42}$ (as 42T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 42
The 42 conjugacy class representatives for $C_{42}$
Character table for $C_{42}$

Intermediate fields

\(\Q(\sqrt{43}) \), 3.3.1849.1, 6.6.9408540352.1, 7.7.6321363049.1, 14.14.28152039412241052225421312.1, \(\Q(\zeta_{43})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $21^{2}$ $42$ ${\href{/padicField/7.3.0.1}{3} }^{14}$ ${\href{/padicField/11.14.0.1}{14} }^{3}$ $21^{2}$ $21^{2}$ $21^{2}$ $42$ $42$ $42$ ${\href{/padicField/37.6.0.1}{6} }^{7}$ ${\href{/padicField/41.7.0.1}{7} }^{6}$ R ${\href{/padicField/47.14.0.1}{14} }^{3}$ $21^{2}$ ${\href{/padicField/59.14.0.1}{14} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.14.14.15$x^{14} + 14 x^{13} + 126 x^{12} + 784 x^{11} + 4300 x^{10} + 19592 x^{9} + 80680 x^{8} + 276608 x^{7} + 822832 x^{6} + 1982880 x^{5} + 3998112 x^{4} + 6222080 x^{3} + 7679040 x^{2} + 6275456 x + 3453824$$2$$7$$14$$C_{14}$$[2]^{7}$
2.14.14.15$x^{14} + 14 x^{13} + 126 x^{12} + 784 x^{11} + 4300 x^{10} + 19592 x^{9} + 80680 x^{8} + 276608 x^{7} + 822832 x^{6} + 1982880 x^{5} + 3998112 x^{4} + 6222080 x^{3} + 7679040 x^{2} + 6275456 x + 3453824$$2$$7$$14$$C_{14}$$[2]^{7}$
2.14.14.15$x^{14} + 14 x^{13} + 126 x^{12} + 784 x^{11} + 4300 x^{10} + 19592 x^{9} + 80680 x^{8} + 276608 x^{7} + 822832 x^{6} + 1982880 x^{5} + 3998112 x^{4} + 6222080 x^{3} + 7679040 x^{2} + 6275456 x + 3453824$$2$$7$$14$$C_{14}$$[2]^{7}$
\(43\) Copy content Toggle raw display Deg $42$$42$$1$$41$