Properties

Label 42.42.519...528.1
Degree $42$
Signature $[42, 0]$
Discriminant $5.198\times 10^{77}$
Root discriminant \(70.86\)
Ramified primes $2,7$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{42}$ (as 42T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^42 - 42*x^40 + 819*x^38 - 9842*x^36 + 81585*x^34 - 494802*x^32 + 2272424*x^30 - 8069425*x^28 + 22428280*x^26 - 49085750*x^24 + 84674891*x^22 - 114729727*x^20 + 121131479*x^18 - 98380632*x^16 + 60329941*x^14 - 27217932*x^12 + 8716708*x^10 - 1885324*x^8 + 256221*x^6 - 19551*x^4 + 686*x^2 - 7)
 
gp: K = bnfinit(y^42 - 42*y^40 + 819*y^38 - 9842*y^36 + 81585*y^34 - 494802*y^32 + 2272424*y^30 - 8069425*y^28 + 22428280*y^26 - 49085750*y^24 + 84674891*y^22 - 114729727*y^20 + 121131479*y^18 - 98380632*y^16 + 60329941*y^14 - 27217932*y^12 + 8716708*y^10 - 1885324*y^8 + 256221*y^6 - 19551*y^4 + 686*y^2 - 7, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^42 - 42*x^40 + 819*x^38 - 9842*x^36 + 81585*x^34 - 494802*x^32 + 2272424*x^30 - 8069425*x^28 + 22428280*x^26 - 49085750*x^24 + 84674891*x^22 - 114729727*x^20 + 121131479*x^18 - 98380632*x^16 + 60329941*x^14 - 27217932*x^12 + 8716708*x^10 - 1885324*x^8 + 256221*x^6 - 19551*x^4 + 686*x^2 - 7);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^42 - 42*x^40 + 819*x^38 - 9842*x^36 + 81585*x^34 - 494802*x^32 + 2272424*x^30 - 8069425*x^28 + 22428280*x^26 - 49085750*x^24 + 84674891*x^22 - 114729727*x^20 + 121131479*x^18 - 98380632*x^16 + 60329941*x^14 - 27217932*x^12 + 8716708*x^10 - 1885324*x^8 + 256221*x^6 - 19551*x^4 + 686*x^2 - 7)
 

\( x^{42} - 42 x^{40} + 819 x^{38} - 9842 x^{36} + 81585 x^{34} - 494802 x^{32} + 2272424 x^{30} - 8069425 x^{28} + \cdots - 7 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $42$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[42, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(519767234928222794437622861788597020192717533652199079454480438860528408854528\) \(\medspace = 2^{42}\cdot 7^{77}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(70.86\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 7^{11/6}\approx 70.8559625871494$
Ramified primes:   \(2\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{7}) \)
$\card{ \Gal(K/\Q) }$:  $42$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(196=2^{2}\cdot 7^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{196}(1,·)$, $\chi_{196}(3,·)$, $\chi_{196}(65,·)$, $\chi_{196}(9,·)$, $\chi_{196}(139,·)$, $\chi_{196}(141,·)$, $\chi_{196}(143,·)$, $\chi_{196}(19,·)$, $\chi_{196}(149,·)$, $\chi_{196}(25,·)$, $\chi_{196}(27,·)$, $\chi_{196}(29,·)$, $\chi_{196}(31,·)$, $\chi_{196}(37,·)$, $\chi_{196}(167,·)$, $\chi_{196}(169,·)$, $\chi_{196}(171,·)$, $\chi_{196}(47,·)$, $\chi_{196}(177,·)$, $\chi_{196}(53,·)$, $\chi_{196}(137,·)$, $\chi_{196}(57,·)$, $\chi_{196}(159,·)$, $\chi_{196}(193,·)$, $\chi_{196}(195,·)$, $\chi_{196}(55,·)$, $\chi_{196}(81,·)$, $\chi_{196}(75,·)$, $\chi_{196}(83,·)$, $\chi_{196}(85,·)$, $\chi_{196}(87,·)$, $\chi_{196}(93,·)$, $\chi_{196}(165,·)$, $\chi_{196}(59,·)$, $\chi_{196}(131,·)$, $\chi_{196}(103,·)$, $\chi_{196}(109,·)$, $\chi_{196}(111,·)$, $\chi_{196}(113,·)$, $\chi_{196}(115,·)$, $\chi_{196}(187,·)$, $\chi_{196}(121,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $41$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{14}-14a^{12}+77a^{10}-210a^{8}+294a^{6}-196a^{4}+49a^{2}-2$, $a^{14}-14a^{12}+77a^{10}-210a^{8}+294a^{6}-196a^{4}+49a^{2}-3$, $a^{12}-12a^{10}+54a^{8}-112a^{6}+105a^{4}-36a^{2}+2$, $a^{24}-24a^{22}+252a^{20}-1520a^{18}+5814a^{16}-14688a^{14}+24752a^{12}-27456a^{10}+19305a^{8}-8008a^{6}+1716a^{4}-144a^{2}+3$, $a^{26}-26a^{24}+299a^{22}-2002a^{20}+8645a^{18}-25194a^{16}+50388a^{14}-68952a^{12}+63206a^{10}-37180a^{8}+13013a^{6}-2366a^{4}+169a^{2}-3$, $a^{40}-39a^{38}+702a^{36}-7735a^{34}+58344a^{32}-319177a^{30}+1308974a^{28}-4102543a^{26}+9927801a^{24}-18616843a^{22}+27002646a^{20}-30087146a^{18}+25453862a^{16}-16083598a^{14}+7434389a^{12}-2454035a^{10}+562837a^{8}-86029a^{6}+7931a^{4}-349a^{2}+5$, $a^{16}-16a^{14}+104a^{12}-352a^{10}+660a^{8}-672a^{6}+336a^{4}-64a^{2}+3$, $a^{4}-4a^{2}+2$, $a^{24}-24a^{22}+252a^{20}-1520a^{18}+5814a^{16}-14688a^{14}+24752a^{12}-27456a^{10}+19305a^{8}-8008a^{6}+1716a^{4}-144a^{2}+2$, $a^{2}-2$, $a^{30}-30a^{28}+405a^{26}-3250a^{24}+17250a^{22}-63756a^{20}+168245a^{18}-319770a^{16}+436050a^{14}-419900a^{12}+277134a^{10}-119340a^{8}+30940a^{6}-4200a^{4}+225a^{2}-2$, $a^{40}-40a^{38}+740a^{36}-8400a^{34}+65450a^{32}-371009a^{30}+1582270a^{28}-5178646a^{26}+13151151a^{24}-26030549a^{22}+40125778a^{20}-47897290a^{18}+43804615a^{16}-30202454a^{14}+15346957a^{12}-5570720a^{10}+1383019a^{8}-220297a^{6}+20307a^{4}-895a^{2}+12$, $a^{38}-38a^{36}+665a^{34}-7106a^{32}+51832a^{30}-273296a^{28}+1076103a^{26}-3223350a^{24}+7413705a^{22}-13123110a^{20}+17809935a^{18}-18349630a^{16}+14115100a^{14}-7904456a^{12}+3105322a^{10}-810084a^{8}+128877a^{6}-10830a^{4}+361a^{2}-2$, $a^{10}-10a^{8}+35a^{6}-50a^{4}+25a^{2}-2$, $a^{18}-18a^{16}+135a^{14}-546a^{12}+1287a^{10}-1782a^{8}+1386a^{6}-540a^{4}+81a^{2}-2$, $a^{20}-20a^{18}+170a^{16}-800a^{14}+2275a^{12}-4004a^{10}+4290a^{8}-2640a^{6}+825a^{4}-100a^{2}+2$, $a^{16}-16a^{14}+104a^{12}-352a^{10}+660a^{8}-672a^{6}+336a^{4}-64a^{2}+2$, $a^{32}-32a^{30}+464a^{28}-4032a^{26}+23400a^{24}-95680a^{22}+283360a^{20}-615296a^{18}+980628a^{16}-1136960a^{14}+940576a^{12}-537472a^{10}+201552a^{8}-45696a^{6}+5440a^{4}-256a^{2}+2$, $a^{8}-8a^{6}+20a^{4}-16a^{2}+2$, $a^{40}-39a^{38}+702a^{36}-7735a^{34}+58343a^{32}-319144a^{30}+1308480a^{28}-4098105a^{26}+9901124a^{24}-18503591a^{22}+26653298a^{20}-29293648a^{18}+24123560a^{16}-14449117a^{14}+5987670a^{12}-1558478a^{10}+193052a^{8}+8442a^{6}-5277a^{4}+471a^{2}-10$, $a^{21}-21a^{19}+189a^{17}-952a^{15}+a^{14}+2940a^{13}-14a^{12}-5733a^{11}+77a^{10}+7007a^{9}-210a^{8}-5148a^{7}+294a^{6}+2079a^{5}-196a^{4}-385a^{3}+49a^{2}+21a-2$, $a^{35}-35a^{33}+560a^{31}-5425a^{29}+a^{28}+35525a^{27}-28a^{26}-166257a^{25}+350a^{24}+573300a^{23}-2576a^{22}-1480050a^{21}+12397a^{20}+2877875a^{19}-40964a^{18}-4206125a^{17}+94962a^{16}+4576264a^{15}-155041a^{14}-3640210a^{13}+176372a^{12}+2057510a^{11}-136213a^{10}-791350a^{9}+68278a^{8}+193800a^{7}-20678a^{6}-27132a^{5}+3381a^{4}+1785a^{3}-245a^{2}-35a+4$, $a^{19}-19a^{17}+a^{16}+152a^{15}-16a^{14}-665a^{13}+104a^{12}+1729a^{11}-352a^{10}-2717a^{9}+660a^{8}+2508a^{7}-672a^{6}-1254a^{5}+336a^{4}+285a^{3}-64a^{2}-19a+2$, $a^{28}-28a^{26}+350a^{24}-2576a^{22}+a^{21}+12397a^{20}-21a^{19}-40964a^{18}+189a^{17}+94962a^{16}-952a^{15}-155041a^{14}+2940a^{13}+176372a^{12}-5733a^{11}-136213a^{10}+7007a^{9}+68278a^{8}-5148a^{7}-20678a^{6}+2079a^{5}+3381a^{4}-385a^{3}-245a^{2}+21a+5$, $a^{30}-30a^{28}+405a^{26}-3250a^{24}-a^{23}+17250a^{22}+23a^{21}-63756a^{20}-230a^{19}+168245a^{18}+1311a^{17}-319770a^{16}-4692a^{15}+436050a^{14}+10948a^{13}-419900a^{12}-16744a^{11}+277134a^{10}+16445a^{9}-119340a^{8}-9867a^{7}+30940a^{6}+3289a^{5}-4200a^{4}-506a^{3}+225a^{2}+23a-2$, $a^{25}-25a^{23}+275a^{21}-1750a^{19}+7125a^{17}-19380a^{15}+35700a^{13}-44200a^{11}+a^{10}+35750a^{9}-10a^{8}-17875a^{7}+35a^{6}+5005a^{5}-50a^{4}-650a^{3}+25a^{2}+25a-2$, $a^{15}-15a^{13}+90a^{11}-a^{10}-275a^{9}+10a^{8}+450a^{7}-35a^{6}-377a^{5}+50a^{4}+135a^{3}-25a^{2}-10a+1$, $a^{33}-33a^{31}+495a^{29}-4466a^{27}+27027a^{25}-115830a^{23}+361790a^{21}-834900a^{19}+1427679a^{17}-1797818a^{15}+1641486a^{13}-1058148a^{11}+461890a^{9}-127908a^{7}+20196a^{5}-1496a^{3}-a^{2}+33a+2$, $a^{9}-9a^{7}+27a^{5}-30a^{3}+a^{2}+9a-2$, $a^{40}-40a^{38}+740a^{36}-8400a^{34}-a^{33}+65450a^{32}+33a^{31}-371008a^{30}-495a^{29}+1582240a^{28}+4466a^{27}-5178240a^{26}-27027a^{25}+13147875a^{24}+115830a^{23}-26013000a^{22}-361790a^{21}+40060020a^{20}+834900a^{19}-47720400a^{18}-1427679a^{17}+43459650a^{16}+1797818a^{15}-29716000a^{14}-1641486a^{13}+14858000a^{12}+1058148a^{11}-5230016a^{10}-461890a^{9}+1225785a^{8}+127908a^{7}-175560a^{6}-20196a^{5}+13300a^{4}+1496a^{3}-400a^{2}-33a+2$, $a^{41}-41a^{39}+779a^{37}-a^{36}-9102a^{35}+36a^{34}+73185a^{33}-594a^{32}-429352a^{31}+5952a^{30}+1901415a^{29}-40455a^{28}-6487156a^{27}+197316a^{26}+17249662a^{25}-712530a^{24}-35934949a^{23}+1937521a^{22}+58646918a^{21}-3996158a^{20}-74616346a^{19}+6249329a^{18}+73275153a^{17}-7356002a^{16}-54670979a^{15}+6423196a^{14}+30282527a^{13}-4066517a^{12}-12047334a^{11}+1805727a^{10}+3282136a^{9}-536988a^{8}-570427a^{7}+100383a^{6}+56420a^{5}-10756a^{4}-2534a^{3}+545a^{2}+24a-6$, $a^{40}-40a^{38}+740a^{36}-8400a^{34}+65450a^{32}-371008a^{30}-a^{29}+1582240a^{28}+29a^{27}-5178240a^{26}-377a^{25}+13147875a^{24}+2900a^{23}-26013000a^{22}-14674a^{21}+40060020a^{20}+51359a^{19}-47720400a^{18}-127281a^{17}+43459650a^{16}+224808a^{15}-29716000a^{14}-281010a^{13}+14858000a^{12}+243543a^{11}-5230016a^{10}-141009a^{9}+1225785a^{8}+51316a^{7}-175560a^{6}-10633a^{5}+13300a^{4}+1070a^{3}-400a^{2}-40a+1$, $a^{3}-a^{2}-2a+1$, $a^{39}+a^{38}-39a^{37}-38a^{36}+702a^{35}+665a^{34}-7735a^{33}-7107a^{32}+58343a^{31}+51864a^{30}-319145a^{29}-273760a^{28}+1308510a^{27}+1080135a^{26}-4098510a^{25}-3246751a^{24}+9904375a^{23}+7509409a^{22}-18520865a^{21}-13406722a^{20}+26717306a^{19}+18426751a^{18}-29463413a^{17}-19336072a^{16}+24449145a^{15}+15266748a^{14}-14899871a^{13}-8869784a^{12}+6432427a^{11}+3670250a^{10}-1863432a^{9}-1030941a^{8}+332411a^{7}+182581a^{6}-31290a^{5}-17987a^{4}+1081a^{3}+765a^{2}-2a-8$, $a^{41}-41a^{39}+779a^{37}-9102a^{35}+73185a^{33}-429352a^{31}+1901416a^{29}-6487184a^{27}+17250011a^{25}-35937500a^{23}+58659040a^{21}-74655560a^{19}+73362990a^{17}-a^{16}-54806640a^{15}+16a^{14}+30423200a^{13}-104a^{12}-12139360a^{11}+352a^{10}+3314729a^{9}-660a^{8}-573386a^{7}+672a^{6}+54978a^{5}-336a^{4}-2220a^{3}+64a^{2}+16a-1$, $a^{27}-27a^{25}+324a^{23}-2277a^{21}+10395a^{19}+a^{18}-32319a^{17}-18a^{16}+69768a^{15}+135a^{14}-104652a^{13}-546a^{12}+107406a^{11}+1287a^{10}-72929a^{9}-1782a^{8}+30879a^{7}+1386a^{6}-7344a^{5}-540a^{4}+789a^{3}+81a^{2}-18a-1$, $a^{37}-37a^{35}+629a^{33}-6512a^{31}+45880a^{29}-232841a^{27}+878787a^{25}-a^{24}-2510820a^{23}+24a^{22}+5476185a^{21}-252a^{20}-9126975a^{19}+1520a^{18}+11560835a^{17}-5814a^{16}-10994920a^{15}+14688a^{14}+7696443a^{13}-24752a^{12}-3848209a^{11}+27456a^{10}+1314545a^{9}-19305a^{8}-286668a^{7}+8008a^{6}+35671a^{5}-1716a^{4}-2018a^{3}+144a^{2}+24a-1$, $a^{33}+a^{32}-33a^{31}-32a^{30}+495a^{29}+464a^{28}-4466a^{27}-4032a^{26}+27027a^{25}+23400a^{24}-115830a^{23}-95680a^{22}+361790a^{21}+283360a^{20}-834900a^{19}-615296a^{18}+1427679a^{17}+980628a^{16}-1797818a^{15}-1136960a^{14}+1641486a^{13}+940576a^{12}-1058148a^{11}-537472a^{10}+461890a^{9}+201552a^{8}-127908a^{7}-45696a^{6}+20196a^{5}+5440a^{4}-1496a^{3}-256a^{2}+32a+1$, $a^{13}-13a^{11}+65a^{9}-156a^{7}+a^{6}+182a^{5}-6a^{4}-91a^{3}+9a^{2}+13a-2$, $a^{33}-33a^{31}+495a^{29}-4466a^{27}-a^{26}+27027a^{25}+26a^{24}-115830a^{23}-299a^{22}+361790a^{21}+2002a^{20}-834900a^{19}-8645a^{18}+1427679a^{17}+25194a^{16}-1797818a^{15}-50388a^{14}+1641486a^{13}+68952a^{12}-1058148a^{11}-63206a^{10}+461890a^{9}+37180a^{8}-127908a^{7}-13013a^{6}+20196a^{5}+2366a^{4}-1496a^{3}-169a^{2}+33a+2$, $a^{39}-39a^{37}+702a^{35}-7735a^{33}+58344a^{31}-319176a^{29}+1308944a^{27}+a^{26}-4102137a^{25}-26a^{24}+9924525a^{23}+299a^{22}-18599295a^{21}-2002a^{20}+26936910a^{19}+8645a^{18}-29910465a^{17}-25194a^{16}+25110020a^{15}+50388a^{14}-15600899a^{13}-68952a^{12}+6953531a^{11}+63206a^{10}-2124629a^{9}-37180a^{8}+415545a^{7}+13013a^{6}-46501a^{5}-2366a^{4}+2379a^{3}+169a^{2}-26a-1$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 40972406918644810000000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{42}\cdot(2\pi)^{0}\cdot 40972406918644810000000000 \cdot 1}{2\cdot\sqrt{519767234928222794437622861788597020192717533652199079454480438860528408854528}}\cr\approx \mathstrut & 0.124973188408209 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^42 - 42*x^40 + 819*x^38 - 9842*x^36 + 81585*x^34 - 494802*x^32 + 2272424*x^30 - 8069425*x^28 + 22428280*x^26 - 49085750*x^24 + 84674891*x^22 - 114729727*x^20 + 121131479*x^18 - 98380632*x^16 + 60329941*x^14 - 27217932*x^12 + 8716708*x^10 - 1885324*x^8 + 256221*x^6 - 19551*x^4 + 686*x^2 - 7)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^42 - 42*x^40 + 819*x^38 - 9842*x^36 + 81585*x^34 - 494802*x^32 + 2272424*x^30 - 8069425*x^28 + 22428280*x^26 - 49085750*x^24 + 84674891*x^22 - 114729727*x^20 + 121131479*x^18 - 98380632*x^16 + 60329941*x^14 - 27217932*x^12 + 8716708*x^10 - 1885324*x^8 + 256221*x^6 - 19551*x^4 + 686*x^2 - 7, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^42 - 42*x^40 + 819*x^38 - 9842*x^36 + 81585*x^34 - 494802*x^32 + 2272424*x^30 - 8069425*x^28 + 22428280*x^26 - 49085750*x^24 + 84674891*x^22 - 114729727*x^20 + 121131479*x^18 - 98380632*x^16 + 60329941*x^14 - 27217932*x^12 + 8716708*x^10 - 1885324*x^8 + 256221*x^6 - 19551*x^4 + 686*x^2 - 7);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^42 - 42*x^40 + 819*x^38 - 9842*x^36 + 81585*x^34 - 494802*x^32 + 2272424*x^30 - 8069425*x^28 + 22428280*x^26 - 49085750*x^24 + 84674891*x^22 - 114729727*x^20 + 121131479*x^18 - 98380632*x^16 + 60329941*x^14 - 27217932*x^12 + 8716708*x^10 - 1885324*x^8 + 256221*x^6 - 19551*x^4 + 686*x^2 - 7);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{42}$ (as 42T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 42
The 42 conjugacy class representatives for $C_{42}$
Character table for $C_{42}$

Intermediate fields

\(\Q(\sqrt{7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{28})^+\), 7.7.13841287201.1, 14.14.21972068264574400934821888.1, \(\Q(\zeta_{49})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $21^{2}$ $42$ R $42$ ${\href{/padicField/13.14.0.1}{14} }^{3}$ $42$ ${\href{/padicField/19.3.0.1}{3} }^{14}$ $42$ ${\href{/padicField/29.7.0.1}{7} }^{6}$ ${\href{/padicField/31.3.0.1}{3} }^{14}$ $21^{2}$ ${\href{/padicField/41.14.0.1}{14} }^{3}$ ${\href{/padicField/43.14.0.1}{14} }^{3}$ $21^{2}$ $21^{2}$ $21^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $42$$2$$21$$42$
\(7\) Copy content Toggle raw display Deg $42$$42$$1$$77$