Properties

Label 44.0.162...944.1
Degree $44$
Signature $[0, 22]$
Discriminant $1.626\times 10^{78}$
Root discriminant \(59.91\)
Ramified primes $2,3,23$
Class number not computed
Class group not computed
Galois group $C_2\times C_{22}$ (as 44T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^44 - 21*x^42 + 251*x^40 - 2052*x^38 + 12691*x^36 - 61778*x^34 + 243629*x^32 - 788303*x^30 + 2113175*x^28 - 4700059*x^26 + 8677408*x^24 - 13214290*x^22 + 16492213*x^20 - 16617826*x^18 + 13339732*x^16 - 8284333*x^14 + 3900832*x^12 - 1305733*x^10 + 306592*x^8 - 41184*x^6 + 3641*x^4 - 66*x^2 + 1)
 
gp: K = bnfinit(y^44 - 21*y^42 + 251*y^40 - 2052*y^38 + 12691*y^36 - 61778*y^34 + 243629*y^32 - 788303*y^30 + 2113175*y^28 - 4700059*y^26 + 8677408*y^24 - 13214290*y^22 + 16492213*y^20 - 16617826*y^18 + 13339732*y^16 - 8284333*y^14 + 3900832*y^12 - 1305733*y^10 + 306592*y^8 - 41184*y^6 + 3641*y^4 - 66*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^44 - 21*x^42 + 251*x^40 - 2052*x^38 + 12691*x^36 - 61778*x^34 + 243629*x^32 - 788303*x^30 + 2113175*x^28 - 4700059*x^26 + 8677408*x^24 - 13214290*x^22 + 16492213*x^20 - 16617826*x^18 + 13339732*x^16 - 8284333*x^14 + 3900832*x^12 - 1305733*x^10 + 306592*x^8 - 41184*x^6 + 3641*x^4 - 66*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 - 21*x^42 + 251*x^40 - 2052*x^38 + 12691*x^36 - 61778*x^34 + 243629*x^32 - 788303*x^30 + 2113175*x^28 - 4700059*x^26 + 8677408*x^24 - 13214290*x^22 + 16492213*x^20 - 16617826*x^18 + 13339732*x^16 - 8284333*x^14 + 3900832*x^12 - 1305733*x^10 + 306592*x^8 - 41184*x^6 + 3641*x^4 - 66*x^2 + 1)
 

\( x^{44} - 21 x^{42} + 251 x^{40} - 2052 x^{38} + 12691 x^{36} - 61778 x^{34} + 243629 x^{32} - 788303 x^{30} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $44$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 22]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1625926291579854267093042018571578660715394142508043230799997286804887850450944\) \(\medspace = 2^{44}\cdot 3^{22}\cdot 23^{40}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(59.91\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}23^{10/11}\approx 59.91354533944697$
Ramified primes:   \(2\), \(3\), \(23\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $44$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(276=2^{2}\cdot 3\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{276}(1,·)$, $\chi_{276}(131,·)$, $\chi_{276}(133,·)$, $\chi_{276}(257,·)$, $\chi_{276}(265,·)$, $\chi_{276}(139,·)$, $\chi_{276}(13,·)$, $\chi_{276}(271,·)$, $\chi_{276}(259,·)$, $\chi_{276}(151,·)$, $\chi_{276}(25,·)$, $\chi_{276}(29,·)$, $\chi_{276}(31,·)$, $\chi_{276}(35,·)$, $\chi_{276}(167,·)$, $\chi_{276}(41,·)$, $\chi_{276}(95,·)$, $\chi_{276}(173,·)$, $\chi_{276}(47,·)$, $\chi_{276}(49,·)$, $\chi_{276}(179,·)$, $\chi_{276}(55,·)$, $\chi_{276}(185,·)$, $\chi_{276}(59,·)$, $\chi_{276}(193,·)$, $\chi_{276}(197,·)$, $\chi_{276}(71,·)$, $\chi_{276}(73,·)$, $\chi_{276}(119,·)$, $\chi_{276}(77,·)$, $\chi_{276}(269,·)$, $\chi_{276}(209,·)$, $\chi_{276}(163,·)$, $\chi_{276}(85,·)$, $\chi_{276}(215,·)$, $\chi_{276}(223,·)$, $\chi_{276}(187,·)$, $\chi_{276}(101,·)$, $\chi_{276}(233,·)$, $\chi_{276}(239,·)$, $\chi_{276}(211,·)$, $\chi_{276}(169,·)$, $\chi_{276}(121,·)$, $\chi_{276}(127,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2097152}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $\frac{1}{38503}a^{40}-\frac{14974}{38503}a^{38}-\frac{7545}{38503}a^{36}-\frac{11609}{38503}a^{34}+\frac{12115}{38503}a^{32}+\frac{3952}{38503}a^{30}+\frac{7568}{38503}a^{28}-\frac{9852}{38503}a^{26}+\frac{3271}{38503}a^{24}-\frac{2590}{38503}a^{22}-\frac{4438}{38503}a^{20}+\frac{12705}{38503}a^{18}-\frac{13257}{38503}a^{16}+\frac{10861}{38503}a^{14}-\frac{18128}{38503}a^{12}-\frac{5037}{38503}a^{10}+\frac{16826}{38503}a^{8}-\frac{11491}{38503}a^{6}-\frac{15191}{38503}a^{4}-\frac{10591}{38503}a^{2}+\frac{10893}{38503}$, $\frac{1}{38503}a^{41}-\frac{14974}{38503}a^{39}-\frac{7545}{38503}a^{37}-\frac{11609}{38503}a^{35}+\frac{12115}{38503}a^{33}+\frac{3952}{38503}a^{31}+\frac{7568}{38503}a^{29}-\frac{9852}{38503}a^{27}+\frac{3271}{38503}a^{25}-\frac{2590}{38503}a^{23}-\frac{4438}{38503}a^{21}+\frac{12705}{38503}a^{19}-\frac{13257}{38503}a^{17}+\frac{10861}{38503}a^{15}-\frac{18128}{38503}a^{13}-\frac{5037}{38503}a^{11}+\frac{16826}{38503}a^{9}-\frac{11491}{38503}a^{7}-\frac{15191}{38503}a^{5}-\frac{10591}{38503}a^{3}+\frac{10893}{38503}a$, $\frac{1}{39\!\cdots\!53}a^{42}-\frac{19\!\cdots\!75}{39\!\cdots\!53}a^{40}-\frac{15\!\cdots\!50}{39\!\cdots\!53}a^{38}-\frac{60\!\cdots\!86}{39\!\cdots\!53}a^{36}+\frac{96\!\cdots\!98}{39\!\cdots\!53}a^{34}-\frac{42\!\cdots\!51}{39\!\cdots\!53}a^{32}+\frac{65\!\cdots\!33}{39\!\cdots\!53}a^{30}-\frac{14\!\cdots\!11}{39\!\cdots\!53}a^{28}+\frac{12\!\cdots\!06}{39\!\cdots\!53}a^{26}+\frac{45\!\cdots\!14}{39\!\cdots\!53}a^{24}+\frac{10\!\cdots\!29}{39\!\cdots\!53}a^{22}-\frac{12\!\cdots\!55}{39\!\cdots\!53}a^{20}+\frac{12\!\cdots\!36}{39\!\cdots\!53}a^{18}-\frac{13\!\cdots\!33}{39\!\cdots\!53}a^{16}-\frac{56\!\cdots\!52}{39\!\cdots\!53}a^{14}-\frac{69\!\cdots\!19}{39\!\cdots\!53}a^{12}-\frac{13\!\cdots\!84}{39\!\cdots\!53}a^{10}+\frac{16\!\cdots\!65}{39\!\cdots\!53}a^{8}-\frac{17\!\cdots\!34}{39\!\cdots\!53}a^{6}-\frac{14\!\cdots\!05}{39\!\cdots\!53}a^{4}-\frac{17\!\cdots\!38}{39\!\cdots\!53}a^{2}+\frac{18\!\cdots\!21}{39\!\cdots\!53}$, $\frac{1}{39\!\cdots\!53}a^{43}-\frac{19\!\cdots\!75}{39\!\cdots\!53}a^{41}-\frac{15\!\cdots\!50}{39\!\cdots\!53}a^{39}-\frac{60\!\cdots\!86}{39\!\cdots\!53}a^{37}+\frac{96\!\cdots\!98}{39\!\cdots\!53}a^{35}-\frac{42\!\cdots\!51}{39\!\cdots\!53}a^{33}+\frac{65\!\cdots\!33}{39\!\cdots\!53}a^{31}-\frac{14\!\cdots\!11}{39\!\cdots\!53}a^{29}+\frac{12\!\cdots\!06}{39\!\cdots\!53}a^{27}+\frac{45\!\cdots\!14}{39\!\cdots\!53}a^{25}+\frac{10\!\cdots\!29}{39\!\cdots\!53}a^{23}-\frac{12\!\cdots\!55}{39\!\cdots\!53}a^{21}+\frac{12\!\cdots\!36}{39\!\cdots\!53}a^{19}-\frac{13\!\cdots\!33}{39\!\cdots\!53}a^{17}-\frac{56\!\cdots\!52}{39\!\cdots\!53}a^{15}-\frac{69\!\cdots\!19}{39\!\cdots\!53}a^{13}-\frac{13\!\cdots\!84}{39\!\cdots\!53}a^{11}+\frac{16\!\cdots\!65}{39\!\cdots\!53}a^{9}-\frac{17\!\cdots\!34}{39\!\cdots\!53}a^{7}-\frac{14\!\cdots\!05}{39\!\cdots\!53}a^{5}-\frac{17\!\cdots\!38}{39\!\cdots\!53}a^{3}+\frac{18\!\cdots\!21}{39\!\cdots\!53}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $21$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{1793299759063376835378664135048865178373688585}{39550136075673318268146636906670404265971857953} a^{43} - \frac{37524918191114127225451393946175224908107429507}{39550136075673318268146636906670404265971857953} a^{41} + \frac{447284901272128218229591301808252944778196436644}{39550136075673318268146636906670404265971857953} a^{39} - \frac{3645882836287000816414101768580673206196470843929}{39550136075673318268146636906670404265971857953} a^{37} + \frac{22480164947188205680925170226234287579609269605288}{39550136075673318268146636906670404265971857953} a^{35} - \frac{109057747165731681781192779380042573020302787841455}{39550136075673318268146636906670404265971857953} a^{33} + \frac{428454218369402889523266744705522378312522532365379}{39550136075673318268146636906670404265971857953} a^{31} - \frac{1380226261933181872822564645576170371973592506670921}{39550136075673318268146636906670404265971857953} a^{29} + \frac{3680880153832659028736431604610474723067831565699494}{39550136075673318268146636906670404265971857953} a^{27} - \frac{8135814576352391316054710021131930412486905029471824}{39550136075673318268146636906670404265971857953} a^{25} + \frac{14906096680940235386082672071811211460263861946573645}{39550136075673318268146636906670404265971857953} a^{23} - \frac{22479367063610811030950372300497610893271117186709459}{39550136075673318268146636906670404265971857953} a^{21} + \frac{27705573322205199049276348121608471713881569145400448}{39550136075673318268146636906670404265971857953} a^{19} - \frac{27444059324777363037209369190182981475233408409741898}{39550136075673318268146636906670404265971857953} a^{17} + \frac{21519004793326216917235629591870133556476659111095426}{39550136075673318268146636906670404265971857953} a^{15} - \frac{12900146249961478700999452315093622441872757730860338}{39550136075673318268146636906670404265971857953} a^{13} + \frac{5759968267918956170937644195812435949662336470191215}{39550136075673318268146636906670404265971857953} a^{11} - \frac{1750040917198848548965297061359053244112911785532794}{39550136075673318268146636906670404265971857953} a^{9} + \frac{348473274344915359648878440386430236588516863579197}{39550136075673318268146636906670404265971857953} a^{7} - \frac{26920199464397917471205835997146294435151744317003}{39550136075673318268146636906670404265971857953} a^{5} + \frac{490852689044286343341728016721638864406908608802}{39550136075673318268146636906670404265971857953} a^{3} + \frac{282675491634706018423048373549513976076133825027}{39550136075673318268146636906670404265971857953} a \)  (order $12$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^44 - 21*x^42 + 251*x^40 - 2052*x^38 + 12691*x^36 - 61778*x^34 + 243629*x^32 - 788303*x^30 + 2113175*x^28 - 4700059*x^26 + 8677408*x^24 - 13214290*x^22 + 16492213*x^20 - 16617826*x^18 + 13339732*x^16 - 8284333*x^14 + 3900832*x^12 - 1305733*x^10 + 306592*x^8 - 41184*x^6 + 3641*x^4 - 66*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^44 - 21*x^42 + 251*x^40 - 2052*x^38 + 12691*x^36 - 61778*x^34 + 243629*x^32 - 788303*x^30 + 2113175*x^28 - 4700059*x^26 + 8677408*x^24 - 13214290*x^22 + 16492213*x^20 - 16617826*x^18 + 13339732*x^16 - 8284333*x^14 + 3900832*x^12 - 1305733*x^10 + 306592*x^8 - 41184*x^6 + 3641*x^4 - 66*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^44 - 21*x^42 + 251*x^40 - 2052*x^38 + 12691*x^36 - 61778*x^34 + 243629*x^32 - 788303*x^30 + 2113175*x^28 - 4700059*x^26 + 8677408*x^24 - 13214290*x^22 + 16492213*x^20 - 16617826*x^18 + 13339732*x^16 - 8284333*x^14 + 3900832*x^12 - 1305733*x^10 + 306592*x^8 - 41184*x^6 + 3641*x^4 - 66*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 - 21*x^42 + 251*x^40 - 2052*x^38 + 12691*x^36 - 61778*x^34 + 243629*x^32 - 788303*x^30 + 2113175*x^28 - 4700059*x^26 + 8677408*x^24 - 13214290*x^22 + 16492213*x^20 - 16617826*x^18 + 13339732*x^16 - 8284333*x^14 + 3900832*x^12 - 1305733*x^10 + 306592*x^8 - 41184*x^6 + 3641*x^4 - 66*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{22}$ (as 44T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 44
The 44 conjugacy class representatives for $C_2\times C_{22}$
Character table for $C_2\times C_{22}$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{12})\), \(\Q(\zeta_{23})^+\), 22.0.7198079267989980836471065337135104.1, 22.22.1275118148086621135238339811277472268288.1, 22.0.304011857053427966889939263171547.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R $22^{2}$ $22^{2}$ $22^{2}$ ${\href{/padicField/13.11.0.1}{11} }^{4}$ $22^{2}$ $22^{2}$ R $22^{2}$ $22^{2}$ ${\href{/padicField/37.11.0.1}{11} }^{4}$ $22^{2}$ $22^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{22}$ $22^{2}$ $22^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $44$$2$$22$$44$
\(3\) Copy content Toggle raw display Deg $44$$2$$22$$22$
\(23\) Copy content Toggle raw display 23.22.20.1$x^{22} + 231 x^{21} + 24310 x^{20} + 1539615 x^{19} + 65271580 x^{18} + 1948237137 x^{17} + 41892053577 x^{16} + 652037968890 x^{15} + 7265319209115 x^{14} + 56290884204555 x^{13} + 287278948122936 x^{12} + 881069580352567 x^{11} + 1436394740619993 x^{10} + 1407272105659090 x^{9} + 908164935089445 x^{8} + 407525140102740 x^{7} + 130953632793951 x^{6} + 31291611122541 x^{5} + 17709125163290 x^{4} + 131485551467820 x^{3} + 905728303498040 x^{2} + 3760233666129578 x + 7096289029978197$$11$$2$$20$22T1$[\ ]_{11}^{2}$
23.22.20.1$x^{22} + 231 x^{21} + 24310 x^{20} + 1539615 x^{19} + 65271580 x^{18} + 1948237137 x^{17} + 41892053577 x^{16} + 652037968890 x^{15} + 7265319209115 x^{14} + 56290884204555 x^{13} + 287278948122936 x^{12} + 881069580352567 x^{11} + 1436394740619993 x^{10} + 1407272105659090 x^{9} + 908164935089445 x^{8} + 407525140102740 x^{7} + 130953632793951 x^{6} + 31291611122541 x^{5} + 17709125163290 x^{4} + 131485551467820 x^{3} + 905728303498040 x^{2} + 3760233666129578 x + 7096289029978197$$11$$2$$20$22T1$[\ ]_{11}^{2}$