Properties

Label 44.0.191...489.2
Degree $44$
Signature $[0, 22]$
Discriminant $1.912\times 10^{86}$
Root discriminant \(91.40\)
Ramified primes $3,7,23$
Class number not computed
Class group not computed
Galois group $C_2\times C_{22}$ (as 44T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^44 - 20*x^43 + 189*x^42 - 1124*x^41 + 4865*x^40 - 17456*x^39 + 58421*x^38 - 190050*x^37 + 582353*x^36 - 1651670*x^35 + 4443991*x^34 - 11616036*x^33 + 29347307*x^32 - 70941366*x^31 + 165084544*x^30 - 373261630*x^29 + 819539932*x^28 - 1741244694*x^27 + 3587123034*x^26 - 7185027240*x^25 + 13992949317*x^24 - 26465017896*x^23 + 48644839484*x^22 - 86902148486*x^21 + 150906753803*x^20 - 254398639764*x^19 + 416538699753*x^18 - 661207715179*x^17 + 1018298320297*x^16 - 1516385399452*x^15 + 2187310150678*x^14 - 3038199352295*x^13 + 4080627086016*x^12 - 5240849624589*x^11 + 6499724444701*x^10 - 7615237158361*x^9 + 8625505710097*x^8 - 9008819848319*x^7 + 9179431123587*x^6 - 8198182177669*x^5 + 7374297175226*x^4 - 5145387322896*x^3 + 3993217874024*x^2 - 1687064084492*x + 1104623059513)
 
gp: K = bnfinit(y^44 - 20*y^43 + 189*y^42 - 1124*y^41 + 4865*y^40 - 17456*y^39 + 58421*y^38 - 190050*y^37 + 582353*y^36 - 1651670*y^35 + 4443991*y^34 - 11616036*y^33 + 29347307*y^32 - 70941366*y^31 + 165084544*y^30 - 373261630*y^29 + 819539932*y^28 - 1741244694*y^27 + 3587123034*y^26 - 7185027240*y^25 + 13992949317*y^24 - 26465017896*y^23 + 48644839484*y^22 - 86902148486*y^21 + 150906753803*y^20 - 254398639764*y^19 + 416538699753*y^18 - 661207715179*y^17 + 1018298320297*y^16 - 1516385399452*y^15 + 2187310150678*y^14 - 3038199352295*y^13 + 4080627086016*y^12 - 5240849624589*y^11 + 6499724444701*y^10 - 7615237158361*y^9 + 8625505710097*y^8 - 9008819848319*y^7 + 9179431123587*y^6 - 8198182177669*y^5 + 7374297175226*y^4 - 5145387322896*y^3 + 3993217874024*y^2 - 1687064084492*y + 1104623059513, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^44 - 20*x^43 + 189*x^42 - 1124*x^41 + 4865*x^40 - 17456*x^39 + 58421*x^38 - 190050*x^37 + 582353*x^36 - 1651670*x^35 + 4443991*x^34 - 11616036*x^33 + 29347307*x^32 - 70941366*x^31 + 165084544*x^30 - 373261630*x^29 + 819539932*x^28 - 1741244694*x^27 + 3587123034*x^26 - 7185027240*x^25 + 13992949317*x^24 - 26465017896*x^23 + 48644839484*x^22 - 86902148486*x^21 + 150906753803*x^20 - 254398639764*x^19 + 416538699753*x^18 - 661207715179*x^17 + 1018298320297*x^16 - 1516385399452*x^15 + 2187310150678*x^14 - 3038199352295*x^13 + 4080627086016*x^12 - 5240849624589*x^11 + 6499724444701*x^10 - 7615237158361*x^9 + 8625505710097*x^8 - 9008819848319*x^7 + 9179431123587*x^6 - 8198182177669*x^5 + 7374297175226*x^4 - 5145387322896*x^3 + 3993217874024*x^2 - 1687064084492*x + 1104623059513);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 - 20*x^43 + 189*x^42 - 1124*x^41 + 4865*x^40 - 17456*x^39 + 58421*x^38 - 190050*x^37 + 582353*x^36 - 1651670*x^35 + 4443991*x^34 - 11616036*x^33 + 29347307*x^32 - 70941366*x^31 + 165084544*x^30 - 373261630*x^29 + 819539932*x^28 - 1741244694*x^27 + 3587123034*x^26 - 7185027240*x^25 + 13992949317*x^24 - 26465017896*x^23 + 48644839484*x^22 - 86902148486*x^21 + 150906753803*x^20 - 254398639764*x^19 + 416538699753*x^18 - 661207715179*x^17 + 1018298320297*x^16 - 1516385399452*x^15 + 2187310150678*x^14 - 3038199352295*x^13 + 4080627086016*x^12 - 5240849624589*x^11 + 6499724444701*x^10 - 7615237158361*x^9 + 8625505710097*x^8 - 9008819848319*x^7 + 9179431123587*x^6 - 8198182177669*x^5 + 7374297175226*x^4 - 5145387322896*x^3 + 3993217874024*x^2 - 1687064084492*x + 1104623059513)
 

\( x^{44} - 20 x^{43} + 189 x^{42} - 1124 x^{41} + 4865 x^{40} - 17456 x^{39} + 58421 x^{38} + \cdots + 1104623059513 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $44$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 22]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(191\!\cdots\!489\) \(\medspace = 3^{22}\cdot 7^{22}\cdot 23^{42}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(91.40\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}7^{1/2}23^{21/22}\approx 91.39885677323893$
Ramified primes:   \(3\), \(7\), \(23\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $44$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(483=3\cdot 7\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{483}(1,·)$, $\chi_{483}(260,·)$, $\chi_{483}(134,·)$, $\chi_{483}(265,·)$, $\chi_{483}(139,·)$, $\chi_{483}(13,·)$, $\chi_{483}(398,·)$, $\chi_{483}(272,·)$, $\chi_{483}(20,·)$, $\chi_{483}(281,·)$, $\chi_{483}(155,·)$, $\chi_{483}(419,·)$, $\chi_{483}(293,·)$, $\chi_{483}(169,·)$, $\chi_{483}(428,·)$, $\chi_{483}(176,·)$, $\chi_{483}(307,·)$, $\chi_{483}(55,·)$, $\chi_{483}(314,·)$, $\chi_{483}(190,·)$, $\chi_{483}(64,·)$, $\chi_{483}(328,·)$, $\chi_{483}(202,·)$, $\chi_{483}(463,·)$, $\chi_{483}(83,·)$, $\chi_{483}(85,·)$, $\chi_{483}(470,·)$, $\chi_{483}(344,·)$, $\chi_{483}(218,·)$, $\chi_{483}(349,·)$, $\chi_{483}(223,·)$, $\chi_{483}(400,·)$, $\chi_{483}(482,·)$, $\chi_{483}(356,·)$, $\chi_{483}(358,·)$, $\chi_{483}(232,·)$, $\chi_{483}(365,·)$, $\chi_{483}(113,·)$, $\chi_{483}(370,·)$, $\chi_{483}(211,·)$, $\chi_{483}(118,·)$, $\chi_{483}(251,·)$, $\chi_{483}(125,·)$, $\chi_{483}(127,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2097152}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $\frac{1}{137}a^{41}-\frac{51}{137}a^{40}-\frac{11}{137}a^{39}-\frac{20}{137}a^{38}+\frac{44}{137}a^{36}+\frac{12}{137}a^{35}+\frac{8}{137}a^{34}-\frac{1}{137}a^{33}+\frac{10}{137}a^{32}+\frac{25}{137}a^{31}+\frac{26}{137}a^{30}-\frac{37}{137}a^{29}+\frac{57}{137}a^{28}-\frac{58}{137}a^{27}-\frac{53}{137}a^{26}-\frac{35}{137}a^{25}-\frac{53}{137}a^{24}-\frac{51}{137}a^{23}+\frac{42}{137}a^{22}-\frac{68}{137}a^{21}+\frac{33}{137}a^{20}+\frac{68}{137}a^{19}+\frac{24}{137}a^{18}+\frac{28}{137}a^{17}-\frac{63}{137}a^{16}+\frac{37}{137}a^{15}+\frac{18}{137}a^{14}-\frac{30}{137}a^{13}-\frac{67}{137}a^{12}-\frac{54}{137}a^{11}+\frac{20}{137}a^{10}+\frac{45}{137}a^{9}+\frac{35}{137}a^{8}+\frac{51}{137}a^{7}+\frac{43}{137}a^{6}+\frac{46}{137}a^{5}-\frac{26}{137}a^{4}-\frac{19}{137}a^{3}+\frac{12}{137}a^{2}-\frac{5}{137}a+\frac{47}{137}$, $\frac{1}{182953499}a^{42}-\frac{615080}{182953499}a^{41}-\frac{39329368}{182953499}a^{40}+\frac{17985188}{182953499}a^{39}+\frac{14974957}{182953499}a^{38}+\frac{27318392}{182953499}a^{37}+\frac{80054104}{182953499}a^{36}+\frac{81994487}{182953499}a^{35}-\frac{77136495}{182953499}a^{34}-\frac{67994835}{182953499}a^{33}+\frac{84042315}{182953499}a^{32}-\frac{8763668}{182953499}a^{31}+\frac{19190124}{182953499}a^{30}+\frac{30376481}{182953499}a^{29}+\frac{20391025}{182953499}a^{28}+\frac{47087702}{182953499}a^{27}-\frac{30462406}{182953499}a^{26}+\frac{52132858}{182953499}a^{25}-\frac{67207192}{182953499}a^{24}-\frac{90286602}{182953499}a^{23}+\frac{13775962}{182953499}a^{22}+\frac{10620940}{182953499}a^{21}+\frac{80456788}{182953499}a^{20}+\frac{90073569}{182953499}a^{19}-\frac{78262771}{182953499}a^{18}-\frac{11697035}{182953499}a^{17}+\frac{30880324}{182953499}a^{16}-\frac{67514777}{182953499}a^{15}-\frac{63829800}{182953499}a^{14}-\frac{41269278}{182953499}a^{13}+\frac{64679099}{182953499}a^{12}+\frac{1340180}{182953499}a^{11}-\frac{2005259}{182953499}a^{10}+\frac{62359034}{182953499}a^{9}+\frac{23444149}{182953499}a^{8}-\frac{49563872}{182953499}a^{7}-\frac{88480897}{182953499}a^{6}-\frac{29702597}{182953499}a^{5}+\frac{63141751}{182953499}a^{4}+\frac{48873528}{182953499}a^{3}+\frac{6262381}{182953499}a^{2}+\frac{10566763}{182953499}a-\frac{53075492}{182953499}$, $\frac{1}{24\!\cdots\!31}a^{43}+\frac{59\!\cdots\!09}{24\!\cdots\!31}a^{42}+\frac{61\!\cdots\!08}{24\!\cdots\!31}a^{41}-\frac{16\!\cdots\!29}{24\!\cdots\!31}a^{40}-\frac{11\!\cdots\!56}{24\!\cdots\!31}a^{39}+\frac{73\!\cdots\!29}{24\!\cdots\!31}a^{38}+\frac{21\!\cdots\!92}{24\!\cdots\!31}a^{37}+\frac{15\!\cdots\!92}{24\!\cdots\!31}a^{36}+\frac{10\!\cdots\!37}{24\!\cdots\!31}a^{35}-\frac{84\!\cdots\!80}{24\!\cdots\!31}a^{34}-\frac{59\!\cdots\!90}{24\!\cdots\!31}a^{33}+\frac{88\!\cdots\!10}{24\!\cdots\!31}a^{32}-\frac{56\!\cdots\!50}{24\!\cdots\!31}a^{31}+\frac{23\!\cdots\!91}{24\!\cdots\!31}a^{30}-\frac{12\!\cdots\!44}{24\!\cdots\!31}a^{29}+\frac{55\!\cdots\!59}{24\!\cdots\!31}a^{28}-\frac{16\!\cdots\!28}{24\!\cdots\!31}a^{27}-\frac{96\!\cdots\!44}{24\!\cdots\!31}a^{26}+\frac{12\!\cdots\!49}{24\!\cdots\!31}a^{25}-\frac{35\!\cdots\!71}{24\!\cdots\!31}a^{24}-\frac{85\!\cdots\!82}{24\!\cdots\!31}a^{23}+\frac{68\!\cdots\!60}{24\!\cdots\!31}a^{22}-\frac{10\!\cdots\!61}{24\!\cdots\!31}a^{21}-\frac{43\!\cdots\!92}{24\!\cdots\!31}a^{20}+\frac{28\!\cdots\!45}{24\!\cdots\!31}a^{19}-\frac{36\!\cdots\!18}{24\!\cdots\!31}a^{18}+\frac{67\!\cdots\!36}{24\!\cdots\!31}a^{17}+\frac{10\!\cdots\!64}{24\!\cdots\!31}a^{16}+\frac{11\!\cdots\!66}{24\!\cdots\!31}a^{15}-\frac{11\!\cdots\!90}{24\!\cdots\!31}a^{14}-\frac{10\!\cdots\!65}{24\!\cdots\!31}a^{13}-\frac{51\!\cdots\!07}{24\!\cdots\!31}a^{12}-\frac{35\!\cdots\!66}{24\!\cdots\!31}a^{11}-\frac{10\!\cdots\!59}{89\!\cdots\!03}a^{10}-\frac{78\!\cdots\!66}{24\!\cdots\!31}a^{9}-\frac{16\!\cdots\!64}{89\!\cdots\!03}a^{8}+\frac{62\!\cdots\!80}{24\!\cdots\!31}a^{7}+\frac{75\!\cdots\!35}{24\!\cdots\!31}a^{6}+\frac{78\!\cdots\!04}{24\!\cdots\!31}a^{5}+\frac{99\!\cdots\!90}{24\!\cdots\!31}a^{4}-\frac{10\!\cdots\!22}{24\!\cdots\!31}a^{3}+\frac{11\!\cdots\!57}{24\!\cdots\!31}a^{2}+\frac{11\!\cdots\!03}{24\!\cdots\!31}a-\frac{74\!\cdots\!65}{24\!\cdots\!31}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $21$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^44 - 20*x^43 + 189*x^42 - 1124*x^41 + 4865*x^40 - 17456*x^39 + 58421*x^38 - 190050*x^37 + 582353*x^36 - 1651670*x^35 + 4443991*x^34 - 11616036*x^33 + 29347307*x^32 - 70941366*x^31 + 165084544*x^30 - 373261630*x^29 + 819539932*x^28 - 1741244694*x^27 + 3587123034*x^26 - 7185027240*x^25 + 13992949317*x^24 - 26465017896*x^23 + 48644839484*x^22 - 86902148486*x^21 + 150906753803*x^20 - 254398639764*x^19 + 416538699753*x^18 - 661207715179*x^17 + 1018298320297*x^16 - 1516385399452*x^15 + 2187310150678*x^14 - 3038199352295*x^13 + 4080627086016*x^12 - 5240849624589*x^11 + 6499724444701*x^10 - 7615237158361*x^9 + 8625505710097*x^8 - 9008819848319*x^7 + 9179431123587*x^6 - 8198182177669*x^5 + 7374297175226*x^4 - 5145387322896*x^3 + 3993217874024*x^2 - 1687064084492*x + 1104623059513)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^44 - 20*x^43 + 189*x^42 - 1124*x^41 + 4865*x^40 - 17456*x^39 + 58421*x^38 - 190050*x^37 + 582353*x^36 - 1651670*x^35 + 4443991*x^34 - 11616036*x^33 + 29347307*x^32 - 70941366*x^31 + 165084544*x^30 - 373261630*x^29 + 819539932*x^28 - 1741244694*x^27 + 3587123034*x^26 - 7185027240*x^25 + 13992949317*x^24 - 26465017896*x^23 + 48644839484*x^22 - 86902148486*x^21 + 150906753803*x^20 - 254398639764*x^19 + 416538699753*x^18 - 661207715179*x^17 + 1018298320297*x^16 - 1516385399452*x^15 + 2187310150678*x^14 - 3038199352295*x^13 + 4080627086016*x^12 - 5240849624589*x^11 + 6499724444701*x^10 - 7615237158361*x^9 + 8625505710097*x^8 - 9008819848319*x^7 + 9179431123587*x^6 - 8198182177669*x^5 + 7374297175226*x^4 - 5145387322896*x^3 + 3993217874024*x^2 - 1687064084492*x + 1104623059513, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^44 - 20*x^43 + 189*x^42 - 1124*x^41 + 4865*x^40 - 17456*x^39 + 58421*x^38 - 190050*x^37 + 582353*x^36 - 1651670*x^35 + 4443991*x^34 - 11616036*x^33 + 29347307*x^32 - 70941366*x^31 + 165084544*x^30 - 373261630*x^29 + 819539932*x^28 - 1741244694*x^27 + 3587123034*x^26 - 7185027240*x^25 + 13992949317*x^24 - 26465017896*x^23 + 48644839484*x^22 - 86902148486*x^21 + 150906753803*x^20 - 254398639764*x^19 + 416538699753*x^18 - 661207715179*x^17 + 1018298320297*x^16 - 1516385399452*x^15 + 2187310150678*x^14 - 3038199352295*x^13 + 4080627086016*x^12 - 5240849624589*x^11 + 6499724444701*x^10 - 7615237158361*x^9 + 8625505710097*x^8 - 9008819848319*x^7 + 9179431123587*x^6 - 8198182177669*x^5 + 7374297175226*x^4 - 5145387322896*x^3 + 3993217874024*x^2 - 1687064084492*x + 1104623059513);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 - 20*x^43 + 189*x^42 - 1124*x^41 + 4865*x^40 - 17456*x^39 + 58421*x^38 - 190050*x^37 + 582353*x^36 - 1651670*x^35 + 4443991*x^34 - 11616036*x^33 + 29347307*x^32 - 70941366*x^31 + 165084544*x^30 - 373261630*x^29 + 819539932*x^28 - 1741244694*x^27 + 3587123034*x^26 - 7185027240*x^25 + 13992949317*x^24 - 26465017896*x^23 + 48644839484*x^22 - 86902148486*x^21 + 150906753803*x^20 - 254398639764*x^19 + 416538699753*x^18 - 661207715179*x^17 + 1018298320297*x^16 - 1516385399452*x^15 + 2187310150678*x^14 - 3038199352295*x^13 + 4080627086016*x^12 - 5240849624589*x^11 + 6499724444701*x^10 - 7615237158361*x^9 + 8625505710097*x^8 - 9008819848319*x^7 + 9179431123587*x^6 - 8198182177669*x^5 + 7374297175226*x^4 - 5145387322896*x^3 + 3993217874024*x^2 - 1687064084492*x + 1104623059513);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{22}$ (as 44T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 44
The 44 conjugacy class representatives for $C_2\times C_{22}$
Character table for $C_2\times C_{22}$

Intermediate fields

\(\Q(\sqrt{69}) \), \(\Q(\sqrt{-483}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-7}, \sqrt{69})\), \(\Q(\zeta_{23})^+\), \(\Q(\zeta_{69})^+\), 22.0.13826007828239234871378695182440742234972683.1, 22.0.3393400820453274956705986794666660343.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $22^{2}$ R $22^{2}$ R ${\href{/padicField/11.11.0.1}{11} }^{4}$ $22^{2}$ $22^{2}$ $22^{2}$ R $22^{2}$ $22^{2}$ $22^{2}$ $22^{2}$ $22^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{22}$ ${\href{/padicField/53.11.0.1}{11} }^{4}$ $22^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $44$$2$$22$$22$
\(7\) Copy content Toggle raw display Deg $44$$2$$22$$22$
\(23\) Copy content Toggle raw display 23.22.21.1$x^{22} + 506$$22$$1$$21$22T1$[\ ]_{22}$
23.22.21.1$x^{22} + 506$$22$$1$$21$22T1$[\ ]_{22}$