Properties

Label 44.0.860...376.3
Degree $44$
Signature $[0, 22]$
Discriminant $8.601\times 10^{80}$
Root discriminant \(69.09\)
Ramified primes $2,3,23$
Class number not computed
Class group not computed
Galois group $C_2\times C_{22}$ (as 44T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^44 + 3*x^42 + 9*x^40 + 27*x^38 + 81*x^36 + 243*x^34 + 729*x^32 + 2187*x^30 + 6561*x^28 + 19683*x^26 + 59049*x^24 + 177147*x^22 + 531441*x^20 + 1594323*x^18 + 4782969*x^16 + 14348907*x^14 + 43046721*x^12 + 129140163*x^10 + 387420489*x^8 + 1162261467*x^6 + 3486784401*x^4 + 10460353203*x^2 + 31381059609)
 
gp: K = bnfinit(y^44 + 3*y^42 + 9*y^40 + 27*y^38 + 81*y^36 + 243*y^34 + 729*y^32 + 2187*y^30 + 6561*y^28 + 19683*y^26 + 59049*y^24 + 177147*y^22 + 531441*y^20 + 1594323*y^18 + 4782969*y^16 + 14348907*y^14 + 43046721*y^12 + 129140163*y^10 + 387420489*y^8 + 1162261467*y^6 + 3486784401*y^4 + 10460353203*y^2 + 31381059609, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^44 + 3*x^42 + 9*x^40 + 27*x^38 + 81*x^36 + 243*x^34 + 729*x^32 + 2187*x^30 + 6561*x^28 + 19683*x^26 + 59049*x^24 + 177147*x^22 + 531441*x^20 + 1594323*x^18 + 4782969*x^16 + 14348907*x^14 + 43046721*x^12 + 129140163*x^10 + 387420489*x^8 + 1162261467*x^6 + 3486784401*x^4 + 10460353203*x^2 + 31381059609);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 + 3*x^42 + 9*x^40 + 27*x^38 + 81*x^36 + 243*x^34 + 729*x^32 + 2187*x^30 + 6561*x^28 + 19683*x^26 + 59049*x^24 + 177147*x^22 + 531441*x^20 + 1594323*x^18 + 4782969*x^16 + 14348907*x^14 + 43046721*x^12 + 129140163*x^10 + 387420489*x^8 + 1162261467*x^6 + 3486784401*x^4 + 10460353203*x^2 + 31381059609)
 

\( x^{44} + 3 x^{42} + 9 x^{40} + 27 x^{38} + 81 x^{36} + 243 x^{34} + 729 x^{32} + 2187 x^{30} + \cdots + 31381059609 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $44$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 22]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(860\!\cdots\!376\) \(\medspace = 2^{44}\cdot 3^{22}\cdot 23^{42}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(69.09\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}23^{21/22}\approx 69.09104146788619$
Ramified primes:   \(2\), \(3\), \(23\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $44$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(276=2^{2}\cdot 3\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{276}(1,·)$, $\chi_{276}(131,·)$, $\chi_{276}(133,·)$, $\chi_{276}(263,·)$, $\chi_{276}(265,·)$, $\chi_{276}(11,·)$, $\chi_{276}(13,·)$, $\chi_{276}(143,·)$, $\chi_{276}(145,·)$, $\chi_{276}(275,·)$, $\chi_{276}(25,·)$, $\chi_{276}(155,·)$, $\chi_{276}(157,·)$, $\chi_{276}(35,·)$, $\chi_{276}(37,·)$, $\chi_{276}(167,·)$, $\chi_{276}(169,·)$, $\chi_{276}(47,·)$, $\chi_{276}(49,·)$, $\chi_{276}(179,·)$, $\chi_{276}(181,·)$, $\chi_{276}(59,·)$, $\chi_{276}(61,·)$, $\chi_{276}(191,·)$, $\chi_{276}(193,·)$, $\chi_{276}(71,·)$, $\chi_{276}(73,·)$, $\chi_{276}(203,·)$, $\chi_{276}(205,·)$, $\chi_{276}(83,·)$, $\chi_{276}(85,·)$, $\chi_{276}(215,·)$, $\chi_{276}(217,·)$, $\chi_{276}(95,·)$, $\chi_{276}(97,·)$, $\chi_{276}(227,·)$, $\chi_{276}(229,·)$, $\chi_{276}(107,·)$, $\chi_{276}(109,·)$, $\chi_{276}(239,·)$, $\chi_{276}(241,·)$, $\chi_{276}(119,·)$, $\chi_{276}(121,·)$, $\chi_{276}(251,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2097152}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{3}a^{2}$, $\frac{1}{3}a^{3}$, $\frac{1}{9}a^{4}$, $\frac{1}{9}a^{5}$, $\frac{1}{27}a^{6}$, $\frac{1}{27}a^{7}$, $\frac{1}{81}a^{8}$, $\frac{1}{81}a^{9}$, $\frac{1}{243}a^{10}$, $\frac{1}{243}a^{11}$, $\frac{1}{729}a^{12}$, $\frac{1}{729}a^{13}$, $\frac{1}{2187}a^{14}$, $\frac{1}{2187}a^{15}$, $\frac{1}{6561}a^{16}$, $\frac{1}{6561}a^{17}$, $\frac{1}{19683}a^{18}$, $\frac{1}{19683}a^{19}$, $\frac{1}{59049}a^{20}$, $\frac{1}{59049}a^{21}$, $\frac{1}{177147}a^{22}$, $\frac{1}{177147}a^{23}$, $\frac{1}{531441}a^{24}$, $\frac{1}{531441}a^{25}$, $\frac{1}{1594323}a^{26}$, $\frac{1}{1594323}a^{27}$, $\frac{1}{4782969}a^{28}$, $\frac{1}{4782969}a^{29}$, $\frac{1}{14348907}a^{30}$, $\frac{1}{14348907}a^{31}$, $\frac{1}{43046721}a^{32}$, $\frac{1}{43046721}a^{33}$, $\frac{1}{129140163}a^{34}$, $\frac{1}{129140163}a^{35}$, $\frac{1}{387420489}a^{36}$, $\frac{1}{387420489}a^{37}$, $\frac{1}{1162261467}a^{38}$, $\frac{1}{1162261467}a^{39}$, $\frac{1}{3486784401}a^{40}$, $\frac{1}{3486784401}a^{41}$, $\frac{1}{10460353203}a^{42}$, $\frac{1}{10460353203}a^{43}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $21$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{1}{387420489} a^{36} \)  (order $46$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^44 + 3*x^42 + 9*x^40 + 27*x^38 + 81*x^36 + 243*x^34 + 729*x^32 + 2187*x^30 + 6561*x^28 + 19683*x^26 + 59049*x^24 + 177147*x^22 + 531441*x^20 + 1594323*x^18 + 4782969*x^16 + 14348907*x^14 + 43046721*x^12 + 129140163*x^10 + 387420489*x^8 + 1162261467*x^6 + 3486784401*x^4 + 10460353203*x^2 + 31381059609)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^44 + 3*x^42 + 9*x^40 + 27*x^38 + 81*x^36 + 243*x^34 + 729*x^32 + 2187*x^30 + 6561*x^28 + 19683*x^26 + 59049*x^24 + 177147*x^22 + 531441*x^20 + 1594323*x^18 + 4782969*x^16 + 14348907*x^14 + 43046721*x^12 + 129140163*x^10 + 387420489*x^8 + 1162261467*x^6 + 3486784401*x^4 + 10460353203*x^2 + 31381059609, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^44 + 3*x^42 + 9*x^40 + 27*x^38 + 81*x^36 + 243*x^34 + 729*x^32 + 2187*x^30 + 6561*x^28 + 19683*x^26 + 59049*x^24 + 177147*x^22 + 531441*x^20 + 1594323*x^18 + 4782969*x^16 + 14348907*x^14 + 43046721*x^12 + 129140163*x^10 + 387420489*x^8 + 1162261467*x^6 + 3486784401*x^4 + 10460353203*x^2 + 31381059609);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 + 3*x^42 + 9*x^40 + 27*x^38 + 81*x^36 + 243*x^34 + 729*x^32 + 2187*x^30 + 6561*x^28 + 19683*x^26 + 59049*x^24 + 177147*x^22 + 531441*x^20 + 1594323*x^18 + 4782969*x^16 + 14348907*x^14 + 43046721*x^12 + 129140163*x^10 + 387420489*x^8 + 1162261467*x^6 + 3486784401*x^4 + 10460353203*x^2 + 31381059609);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{22}$ (as 44T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 44
The 44 conjugacy class representatives for $C_2\times C_{22}$
Character table for $C_2\times C_{22}$

Intermediate fields

\(\Q(\sqrt{-69}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{3}, \sqrt{-23})\), \(\Q(\zeta_{23})^+\), 22.0.29327717405992286110481815659381862170624.1, \(\Q(\zeta_{23})\), 22.22.1275118148086621135238339811277472268288.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R $22^{2}$ $22^{2}$ $22^{2}$ ${\href{/padicField/13.11.0.1}{11} }^{4}$ $22^{2}$ $22^{2}$ R $22^{2}$ $22^{2}$ $22^{2}$ $22^{2}$ $22^{2}$ ${\href{/padicField/47.1.0.1}{1} }^{44}$ $22^{2}$ ${\href{/padicField/59.11.0.1}{11} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $22$$2$$11$$22$
Deg $22$$2$$11$$22$
\(3\) Copy content Toggle raw display 3.22.11.1$x^{22} - 39366 x^{4} - 177147$$2$$11$$11$22T1$[\ ]_{2}^{11}$
3.22.11.1$x^{22} - 39366 x^{4} - 177147$$2$$11$$11$22T1$[\ ]_{2}^{11}$
\(23\) Copy content Toggle raw display 23.22.21.17$x^{22} + 23$$22$$1$$21$22T1$[\ ]_{22}$
23.22.21.17$x^{22} + 23$$22$$1$$21$22T1$[\ ]_{22}$