Properties

Label 46.0.350...791.1
Degree $46$
Signature $[0, 23]$
Discriminant $-3.505\times 10^{103}$
Root discriminant \(178.23\)
Ramified primes $17,47$
Class number not computed
Class group not computed
Galois group $C_{46}$ (as 46T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^46 - x^45 + 189*x^44 - 189*x^43 + 16733*x^42 - 16733*x^41 + 922141*x^40 - 922141*x^39 + 35453981*x^38 - 35453981*x^37 + 1010238493*x^36 - 1010238493*x^35 + 22122644509*x^34 - 22122644509*x^33 + 381033546781*x^32 - 381033546781*x^31 + 5240134992925*x^30 - 5240134992925*x^29 + 58093519143965*x^28 - 58093519143965*x^27 + 522060523799581*x^26 - 522060523799581*x^25 + 3812008374993949*x^24 - 3812008374993949*x^23 + 22611710381818909*x^22 - 22611710381818909*x^21 + 108699033598592029*x^20 - 108699033598592029*x^19 + 421743845295948829*x^18 - 421743845295948829*x^17 + 1313921558633415709*x^16 - 1313921558633415709*x^15 + 3270956542728504349*x^14 - 3270956542728504349*x^13 + 6494308281238062109*x^12 - 6494308281238062109*x^11 + 10347510359456384029*x^10 - 10347510359456384029*x^9 + 13534369221140710429*x^8 - 13534369221140710429*x^7 + 15234027280705684509*x^6 - 15234027280705684509*x^5 + 15756998991341061149*x^4 - 15756998991341061149*x^3 + 15833067603797115933*x^2 - 15833067603797115933*x + 15836374934773466141)
 
gp: K = bnfinit(y^46 - y^45 + 189*y^44 - 189*y^43 + 16733*y^42 - 16733*y^41 + 922141*y^40 - 922141*y^39 + 35453981*y^38 - 35453981*y^37 + 1010238493*y^36 - 1010238493*y^35 + 22122644509*y^34 - 22122644509*y^33 + 381033546781*y^32 - 381033546781*y^31 + 5240134992925*y^30 - 5240134992925*y^29 + 58093519143965*y^28 - 58093519143965*y^27 + 522060523799581*y^26 - 522060523799581*y^25 + 3812008374993949*y^24 - 3812008374993949*y^23 + 22611710381818909*y^22 - 22611710381818909*y^21 + 108699033598592029*y^20 - 108699033598592029*y^19 + 421743845295948829*y^18 - 421743845295948829*y^17 + 1313921558633415709*y^16 - 1313921558633415709*y^15 + 3270956542728504349*y^14 - 3270956542728504349*y^13 + 6494308281238062109*y^12 - 6494308281238062109*y^11 + 10347510359456384029*y^10 - 10347510359456384029*y^9 + 13534369221140710429*y^8 - 13534369221140710429*y^7 + 15234027280705684509*y^6 - 15234027280705684509*y^5 + 15756998991341061149*y^4 - 15756998991341061149*y^3 + 15833067603797115933*y^2 - 15833067603797115933*y + 15836374934773466141, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^46 - x^45 + 189*x^44 - 189*x^43 + 16733*x^42 - 16733*x^41 + 922141*x^40 - 922141*x^39 + 35453981*x^38 - 35453981*x^37 + 1010238493*x^36 - 1010238493*x^35 + 22122644509*x^34 - 22122644509*x^33 + 381033546781*x^32 - 381033546781*x^31 + 5240134992925*x^30 - 5240134992925*x^29 + 58093519143965*x^28 - 58093519143965*x^27 + 522060523799581*x^26 - 522060523799581*x^25 + 3812008374993949*x^24 - 3812008374993949*x^23 + 22611710381818909*x^22 - 22611710381818909*x^21 + 108699033598592029*x^20 - 108699033598592029*x^19 + 421743845295948829*x^18 - 421743845295948829*x^17 + 1313921558633415709*x^16 - 1313921558633415709*x^15 + 3270956542728504349*x^14 - 3270956542728504349*x^13 + 6494308281238062109*x^12 - 6494308281238062109*x^11 + 10347510359456384029*x^10 - 10347510359456384029*x^9 + 13534369221140710429*x^8 - 13534369221140710429*x^7 + 15234027280705684509*x^6 - 15234027280705684509*x^5 + 15756998991341061149*x^4 - 15756998991341061149*x^3 + 15833067603797115933*x^2 - 15833067603797115933*x + 15836374934773466141);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 - x^45 + 189*x^44 - 189*x^43 + 16733*x^42 - 16733*x^41 + 922141*x^40 - 922141*x^39 + 35453981*x^38 - 35453981*x^37 + 1010238493*x^36 - 1010238493*x^35 + 22122644509*x^34 - 22122644509*x^33 + 381033546781*x^32 - 381033546781*x^31 + 5240134992925*x^30 - 5240134992925*x^29 + 58093519143965*x^28 - 58093519143965*x^27 + 522060523799581*x^26 - 522060523799581*x^25 + 3812008374993949*x^24 - 3812008374993949*x^23 + 22611710381818909*x^22 - 22611710381818909*x^21 + 108699033598592029*x^20 - 108699033598592029*x^19 + 421743845295948829*x^18 - 421743845295948829*x^17 + 1313921558633415709*x^16 - 1313921558633415709*x^15 + 3270956542728504349*x^14 - 3270956542728504349*x^13 + 6494308281238062109*x^12 - 6494308281238062109*x^11 + 10347510359456384029*x^10 - 10347510359456384029*x^9 + 13534369221140710429*x^8 - 13534369221140710429*x^7 + 15234027280705684509*x^6 - 15234027280705684509*x^5 + 15756998991341061149*x^4 - 15756998991341061149*x^3 + 15833067603797115933*x^2 - 15833067603797115933*x + 15836374934773466141)
 

\( x^{46} - x^{45} + 189 x^{44} - 189 x^{43} + 16733 x^{42} - 16733 x^{41} + 922141 x^{40} + \cdots + 15\!\cdots\!41 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $46$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 23]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-350\!\cdots\!791\) \(\medspace = -\,17^{23}\cdot 47^{45}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(178.23\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $17^{1/2}47^{45/46}\approx 178.22653556251296$
Ramified primes:   \(17\), \(47\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-799}) \)
$\card{ \Gal(K/\Q) }$:  $46$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(799=17\cdot 47\)
Dirichlet character group:    $\lbrace$$\chi_{799}(256,·)$, $\chi_{799}(1,·)$, $\chi_{799}(135,·)$, $\chi_{799}(392,·)$, $\chi_{799}(781,·)$, $\chi_{799}(664,·)$, $\chi_{799}(18,·)$, $\chi_{799}(407,·)$, $\chi_{799}(152,·)$, $\chi_{799}(798,·)$, $\chi_{799}(543,·)$, $\chi_{799}(33,·)$, $\chi_{799}(290,·)$, $\chi_{799}(426,·)$, $\chi_{799}(647,·)$, $\chi_{799}(560,·)$, $\chi_{799}(305,·)$, $\chi_{799}(307,·)$, $\chi_{799}(696,·)$, $\chi_{799}(186,·)$, $\chi_{799}(577,·)$, $\chi_{799}(322,·)$, $\chi_{799}(67,·)$, $\chi_{799}(324,·)$, $\chi_{799}(545,·)$, $\chi_{799}(458,·)$, $\chi_{799}(203,·)$, $\chi_{799}(460,·)$, $\chi_{799}(205,·)$, $\chi_{799}(254,·)$, $\chi_{799}(594,·)$, $\chi_{799}(339,·)$, $\chi_{799}(596,·)$, $\chi_{799}(341,·)$, $\chi_{799}(475,·)$, $\chi_{799}(732,·)$, $\chi_{799}(477,·)$, $\chi_{799}(222,·)$, $\chi_{799}(613,·)$, $\chi_{799}(103,·)$, $\chi_{799}(492,·)$, $\chi_{799}(494,·)$, $\chi_{799}(239,·)$, $\chi_{799}(373,·)$, $\chi_{799}(509,·)$, $\chi_{799}(766,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{4194304}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{38\!\cdots\!49}a^{24}-\frac{18\!\cdots\!93}{38\!\cdots\!49}a^{23}+\frac{96}{38\!\cdots\!49}a^{22}+\frac{15\!\cdots\!49}{38\!\cdots\!49}a^{21}+\frac{4032}{38\!\cdots\!49}a^{20}+\frac{24\!\cdots\!76}{38\!\cdots\!49}a^{19}+\frac{97280}{38\!\cdots\!49}a^{18}+\frac{88\!\cdots\!54}{38\!\cdots\!49}a^{17}+\frac{1488384}{38\!\cdots\!49}a^{16}-\frac{42\!\cdots\!63}{38\!\cdots\!49}a^{15}+\frac{15040512}{38\!\cdots\!49}a^{14}-\frac{14\!\cdots\!22}{38\!\cdots\!49}a^{13}+\frac{101384192}{38\!\cdots\!49}a^{12}-\frac{11\!\cdots\!63}{38\!\cdots\!49}a^{11}+\frac{449839104}{38\!\cdots\!49}a^{10}+\frac{26\!\cdots\!12}{38\!\cdots\!49}a^{9}+\frac{1265172480}{38\!\cdots\!49}a^{8}-\frac{13\!\cdots\!61}{38\!\cdots\!49}a^{7}+\frac{2099249152}{38\!\cdots\!49}a^{6}-\frac{14\!\cdots\!31}{38\!\cdots\!49}a^{5}+\frac{1799356416}{38\!\cdots\!49}a^{4}-\frac{30\!\cdots\!50}{38\!\cdots\!49}a^{3}+\frac{603979776}{38\!\cdots\!49}a^{2}-\frac{56\!\cdots\!00}{38\!\cdots\!49}a+\frac{33554432}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{25}+\frac{100}{38\!\cdots\!49}a^{23}-\frac{23\!\cdots\!26}{38\!\cdots\!49}a^{22}+\frac{4400}{38\!\cdots\!49}a^{21}-\frac{13\!\cdots\!43}{38\!\cdots\!49}a^{20}+\frac{112000}{38\!\cdots\!49}a^{19}+\frac{86\!\cdots\!52}{38\!\cdots\!49}a^{18}+\frac{1824000}{38\!\cdots\!49}a^{17}+\frac{68\!\cdots\!16}{38\!\cdots\!49}a^{16}+\frac{19845120}{38\!\cdots\!49}a^{15}-\frac{10\!\cdots\!84}{38\!\cdots\!49}a^{14}+\frac{146227200}{38\!\cdots\!49}a^{13}+\frac{13\!\cdots\!06}{38\!\cdots\!49}a^{12}+\frac{724172800}{38\!\cdots\!49}a^{11}-\frac{14\!\cdots\!65}{38\!\cdots\!49}a^{10}+\frac{2342912000}{38\!\cdots\!49}a^{9}-\frac{10\!\cdots\!87}{38\!\cdots\!49}a^{8}+\frac{4685824000}{38\!\cdots\!49}a^{7}+\frac{17\!\cdots\!75}{38\!\cdots\!49}a^{6}+\frac{5248122880}{38\!\cdots\!49}a^{5}+\frac{19\!\cdots\!91}{38\!\cdots\!49}a^{4}+\frac{2726297600}{38\!\cdots\!49}a^{3}-\frac{15\!\cdots\!93}{38\!\cdots\!49}a^{2}+\frac{419430400}{38\!\cdots\!49}a-\frac{11\!\cdots\!41}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{26}+\frac{15\!\cdots\!22}{38\!\cdots\!49}a^{23}-\frac{5200}{38\!\cdots\!49}a^{22}+\frac{18\!\cdots\!66}{38\!\cdots\!49}a^{21}-\frac{291200}{38\!\cdots\!49}a^{20}-\frac{20\!\cdots\!54}{38\!\cdots\!49}a^{19}-\frac{7904000}{38\!\cdots\!49}a^{18}+\frac{20\!\cdots\!43}{38\!\cdots\!49}a^{17}-\frac{128993280}{38\!\cdots\!49}a^{16}-\frac{89\!\cdots\!23}{38\!\cdots\!49}a^{15}-\frac{1357824000}{38\!\cdots\!49}a^{14}-\frac{55\!\cdots\!07}{38\!\cdots\!49}a^{13}-\frac{9414246400}{38\!\cdots\!49}a^{12}+\frac{49\!\cdots\!14}{38\!\cdots\!49}a^{11}-\frac{42640998400}{38\!\cdots\!49}a^{10}-\frac{43\!\cdots\!44}{38\!\cdots\!49}a^{9}-\frac{121831424000}{38\!\cdots\!49}a^{8}+\frac{13\!\cdots\!79}{38\!\cdots\!49}a^{7}-\frac{204676792320}{38\!\cdots\!49}a^{6}-\frac{15\!\cdots\!20}{38\!\cdots\!49}a^{5}-\frac{177209344000}{38\!\cdots\!49}a^{4}-\frac{13\!\cdots\!85}{38\!\cdots\!49}a^{3}-\frac{59978547200}{38\!\cdots\!49}a^{2}+\frac{64\!\cdots\!10}{38\!\cdots\!49}a-\frac{3355443200}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{27}-\frac{5616}{38\!\cdots\!49}a^{23}-\frac{16\!\cdots\!35}{38\!\cdots\!49}a^{22}-\frac{329472}{38\!\cdots\!49}a^{21}+\frac{68\!\cdots\!66}{38\!\cdots\!49}a^{20}-\frac{9434880}{38\!\cdots\!49}a^{19}-\frac{74\!\cdots\!98}{38\!\cdots\!49}a^{18}-\frac{163897344}{38\!\cdots\!49}a^{17}-\frac{11\!\cdots\!69}{38\!\cdots\!49}a^{16}-\frac{1857503232}{38\!\cdots\!49}a^{15}-\frac{16\!\cdots\!67}{38\!\cdots\!49}a^{14}-\frac{14077919232}{38\!\cdots\!49}a^{13}-\frac{12\!\cdots\!79}{38\!\cdots\!49}a^{12}-\frac{71171702784}{38\!\cdots\!49}a^{11}-\frac{52\!\cdots\!75}{38\!\cdots\!49}a^{10}-\frac{233916334080}{38\!\cdots\!49}a^{9}+\frac{15\!\cdots\!07}{38\!\cdots\!49}a^{8}-\frac{473680576512}{38\!\cdots\!49}a^{7}+\frac{62\!\cdots\!68}{38\!\cdots\!49}a^{6}-\frac{535881056256}{38\!\cdots\!49}a^{5}-\frac{16\!\cdots\!09}{38\!\cdots\!49}a^{4}-\frac{280699600896}{38\!\cdots\!49}a^{3}+\frac{13\!\cdots\!22}{38\!\cdots\!49}a^{2}-\frac{43486543872}{38\!\cdots\!49}a+\frac{46\!\cdots\!45}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{28}+\frac{52\!\cdots\!04}{38\!\cdots\!49}a^{23}+\frac{209664}{38\!\cdots\!49}a^{22}+\frac{15\!\cdots\!55}{38\!\cdots\!49}a^{21}+\frac{13208832}{38\!\cdots\!49}a^{20}+\frac{13\!\cdots\!70}{38\!\cdots\!49}a^{19}+\frac{382427136}{38\!\cdots\!49}a^{18}+\frac{15\!\cdots\!93}{38\!\cdots\!49}a^{17}+\frac{6501261312}{38\!\cdots\!49}a^{16}-\frac{75\!\cdots\!46}{38\!\cdots\!49}a^{15}+\frac{70389596160}{38\!\cdots\!49}a^{14}-\frac{28\!\cdots\!81}{38\!\cdots\!49}a^{13}+\frac{498201919488}{38\!\cdots\!49}a^{12}-\frac{63\!\cdots\!21}{38\!\cdots\!49}a^{11}+\frac{2292380073984}{38\!\cdots\!49}a^{10}-\frac{10\!\cdots\!66}{38\!\cdots\!49}a^{9}+\frac{6631528071168}{38\!\cdots\!49}a^{8}+\frac{12\!\cdots\!41}{38\!\cdots\!49}a^{7}+\frac{11253502181376}{38\!\cdots\!49}a^{6}-\frac{87\!\cdots\!45}{38\!\cdots\!49}a^{5}+\frac{9824486031360}{38\!\cdots\!49}a^{4}-\frac{16\!\cdots\!30}{38\!\cdots\!49}a^{3}+\frac{3348463878144}{38\!\cdots\!49}a^{2}-\frac{78\!\cdots\!37}{38\!\cdots\!49}a+\frac{188441690112}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{29}+\frac{233856}{38\!\cdots\!49}a^{23}+\frac{56\!\cdots\!08}{38\!\cdots\!49}a^{22}+\frac{15434496}{38\!\cdots\!49}a^{21}+\frac{50\!\cdots\!86}{38\!\cdots\!49}a^{20}+\frac{471453696}{38\!\cdots\!49}a^{19}-\frac{16\!\cdots\!96}{38\!\cdots\!49}a^{18}+\frac{8531066880}{38\!\cdots\!49}a^{17}-\frac{18\!\cdots\!55}{38\!\cdots\!49}a^{16}+\frac{99447865344}{38\!\cdots\!49}a^{15}+\frac{53\!\cdots\!25}{38\!\cdots\!49}a^{14}+\frac{769412431872}{38\!\cdots\!49}a^{13}+\frac{12\!\cdots\!13}{38\!\cdots\!49}a^{12}+\frac{3951550267392}{38\!\cdots\!49}a^{11}+\frac{12\!\cdots\!49}{38\!\cdots\!49}a^{10}+\frac{13149696688128}{38\!\cdots\!49}a^{9}-\frac{72\!\cdots\!74}{38\!\cdots\!49}a^{8}+\frac{26897106862080}{38\!\cdots\!49}a^{7}-\frac{16\!\cdots\!22}{38\!\cdots\!49}a^{6}+\frac{30682625605632}{38\!\cdots\!49}a^{5}-\frac{15\!\cdots\!68}{38\!\cdots\!49}a^{4}+\frac{16184242077696}{38\!\cdots\!49}a^{3}+\frac{13\!\cdots\!61}{38\!\cdots\!49}a^{2}+\frac{2522219544576}{38\!\cdots\!49}a+\frac{54\!\cdots\!22}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{30}+\frac{18\!\cdots\!31}{38\!\cdots\!49}a^{23}-\frac{7015680}{38\!\cdots\!49}a^{22}-\frac{10\!\cdots\!17}{38\!\cdots\!49}a^{21}-\frac{471453696}{38\!\cdots\!49}a^{20}+\frac{18\!\cdots\!17}{38\!\cdots\!49}a^{19}-\frac{14218444800}{38\!\cdots\!49}a^{18}+\frac{17\!\cdots\!41}{38\!\cdots\!49}a^{17}-\frac{248619663360}{38\!\cdots\!49}a^{16}+\frac{76\!\cdots\!52}{38\!\cdots\!49}a^{15}-\frac{2747901542400}{38\!\cdots\!49}a^{14}+\frac{80\!\cdots\!99}{38\!\cdots\!49}a^{13}-\frac{19757751336960}{38\!\cdots\!49}a^{12}-\frac{17\!\cdots\!13}{38\!\cdots\!49}a^{11}-\frac{92047876816896}{38\!\cdots\!49}a^{10}-\frac{14\!\cdots\!99}{38\!\cdots\!49}a^{9}-\frac{268971068620800}{38\!\cdots\!49}a^{8}+\frac{56\!\cdots\!07}{38\!\cdots\!49}a^{7}-\frac{460239384084480}{38\!\cdots\!49}a^{6}+\frac{15\!\cdots\!21}{38\!\cdots\!49}a^{5}-\frac{404606051942400}{38\!\cdots\!49}a^{4}+\frac{15\!\cdots\!66}{38\!\cdots\!49}a^{3}-\frac{138722074951680}{38\!\cdots\!49}a^{2}+\frac{12\!\cdots\!50}{38\!\cdots\!49}a-\frac{7846905249792}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{31}-\frac{8055040}{38\!\cdots\!49}a^{23}-\frac{15\!\cdots\!39}{38\!\cdots\!49}a^{22}-\frac{567074816}{38\!\cdots\!49}a^{21}-\frac{18\!\cdots\!62}{38\!\cdots\!49}a^{20}-\frac{18043289600}{38\!\cdots\!49}a^{19}+\frac{71\!\cdots\!54}{38\!\cdots\!49}a^{18}-\frac{335826124800}{38\!\cdots\!49}a^{17}+\frac{17\!\cdots\!62}{38\!\cdots\!49}a^{16}-\frac{3996330885120}{38\!\cdots\!49}a^{15}-\frac{56\!\cdots\!88}{38\!\cdots\!49}a^{14}-\frac{31409758535680}{38\!\cdots\!49}a^{13}+\frac{43\!\cdots\!05}{38\!\cdots\!49}a^{12}-\frac{163330744385536}{38\!\cdots\!49}a^{11}+\frac{80\!\cdots\!58}{38\!\cdots\!49}a^{10}-\frac{549010905497600}{38\!\cdots\!49}a^{9}+\frac{76\!\cdots\!47}{38\!\cdots\!49}a^{8}-\frac{11\!\cdots\!00}{38\!\cdots\!49}a^{7}+\frac{15\!\cdots\!23}{38\!\cdots\!49}a^{6}-\frac{13\!\cdots\!60}{38\!\cdots\!49}a^{5}-\frac{11\!\cdots\!53}{38\!\cdots\!49}a^{4}-\frac{690185138339840}{38\!\cdots\!49}a^{3}+\frac{14\!\cdots\!43}{38\!\cdots\!49}a^{2}-\frac{108112916774912}{38\!\cdots\!49}a-\frac{63\!\cdots\!53}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{32}-\frac{12\!\cdots\!65}{38\!\cdots\!49}a^{23}+\frac{206209024}{38\!\cdots\!49}a^{22}-\frac{11\!\cdots\!95}{38\!\cdots\!49}a^{21}+\frac{14434631680}{38\!\cdots\!49}a^{20}+\frac{24\!\cdots\!42}{38\!\cdots\!49}a^{19}+\frac{447768166400}{38\!\cdots\!49}a^{18}-\frac{12\!\cdots\!54}{38\!\cdots\!49}a^{17}+\frac{7992661770240}{38\!\cdots\!49}a^{16}+\frac{13\!\cdots\!85}{38\!\cdots\!49}a^{15}+\frac{89742167244800}{38\!\cdots\!49}a^{14}-\frac{11\!\cdots\!92}{38\!\cdots\!49}a^{13}+\frac{653322977542144}{38\!\cdots\!49}a^{12}+\frac{96\!\cdots\!59}{38\!\cdots\!49}a^{11}+\frac{30\!\cdots\!60}{38\!\cdots\!49}a^{10}-\frac{10\!\cdots\!02}{38\!\cdots\!49}a^{9}+\frac{90\!\cdots\!00}{38\!\cdots\!49}a^{8}-\frac{13\!\cdots\!95}{38\!\cdots\!49}a^{7}+\frac{15\!\cdots\!20}{38\!\cdots\!49}a^{6}+\frac{13\!\cdots\!38}{38\!\cdots\!49}a^{5}+\frac{13\!\cdots\!00}{38\!\cdots\!49}a^{4}+\frac{32\!\cdots\!42}{38\!\cdots\!49}a^{3}+\frac{47\!\cdots\!28}{38\!\cdots\!49}a^{2}-\frac{82\!\cdots\!35}{38\!\cdots\!49}a+\frac{270282291937280}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{33}+\frac{243032064}{38\!\cdots\!49}a^{23}-\frac{46\!\cdots\!25}{38\!\cdots\!49}a^{22}+\frac{17822351360}{38\!\cdots\!49}a^{21}+\frac{15\!\cdots\!39}{38\!\cdots\!49}a^{20}+\frac{583276953600}{38\!\cdots\!49}a^{19}+\frac{23\!\cdots\!73}{38\!\cdots\!49}a^{18}+\frac{11082262118400}{38\!\cdots\!49}a^{17}+\frac{15\!\cdots\!79}{38\!\cdots\!49}a^{16}+\frac{133972235386880}{38\!\cdots\!49}a^{15}+\frac{63\!\cdots\!74}{38\!\cdots\!49}a^{14}+\frac{10\!\cdots\!24}{38\!\cdots\!49}a^{13}+\frac{70\!\cdots\!73}{38\!\cdots\!49}a^{12}+\frac{55\!\cdots\!20}{38\!\cdots\!49}a^{11}-\frac{12\!\cdots\!42}{38\!\cdots\!49}a^{10}+\frac{18\!\cdots\!00}{38\!\cdots\!49}a^{9}-\frac{56\!\cdots\!57}{38\!\cdots\!49}a^{8}+\frac{39\!\cdots\!00}{38\!\cdots\!49}a^{7}-\frac{56\!\cdots\!97}{38\!\cdots\!49}a^{6}+\frac{45\!\cdots\!40}{38\!\cdots\!49}a^{5}+\frac{29\!\cdots\!33}{38\!\cdots\!49}a^{4}+\frac{24\!\cdots\!68}{38\!\cdots\!49}a^{3}+\frac{31\!\cdots\!90}{38\!\cdots\!49}a^{2}+\frac{38\!\cdots\!60}{38\!\cdots\!49}a+\frac{15\!\cdots\!26}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{34}+\frac{68\!\cdots\!99}{38\!\cdots\!49}a^{23}-\frac{5508726784}{38\!\cdots\!49}a^{22}-\frac{59\!\cdots\!25}{38\!\cdots\!49}a^{21}-\frac{396628328448}{38\!\cdots\!49}a^{20}+\frac{83\!\cdots\!40}{38\!\cdots\!49}a^{19}-\frac{12559897067520}{38\!\cdots\!49}a^{18}-\frac{16\!\cdots\!09}{38\!\cdots\!49}a^{17}-\frac{227752800157696}{38\!\cdots\!49}a^{16}-\frac{54\!\cdots\!66}{38\!\cdots\!49}a^{15}-\frac{25\!\cdots\!44}{38\!\cdots\!49}a^{14}+\frac{80\!\cdots\!48}{38\!\cdots\!49}a^{13}-\frac{19\!\cdots\!68}{38\!\cdots\!49}a^{12}-\frac{12\!\cdots\!82}{38\!\cdots\!49}a^{11}-\frac{90\!\cdots\!56}{38\!\cdots\!49}a^{10}+\frac{10\!\cdots\!14}{38\!\cdots\!49}a^{9}-\frac{26\!\cdots\!20}{38\!\cdots\!49}a^{8}+\frac{10\!\cdots\!04}{38\!\cdots\!49}a^{7}-\frac{46\!\cdots\!88}{38\!\cdots\!49}a^{6}-\frac{14\!\cdots\!48}{38\!\cdots\!49}a^{5}-\frac{41\!\cdots\!56}{38\!\cdots\!49}a^{4}+\frac{14\!\cdots\!13}{38\!\cdots\!49}a^{3}-\frac{14\!\cdots\!04}{38\!\cdots\!49}a^{2}-\frac{16\!\cdots\!19}{38\!\cdots\!49}a-\frac{81\!\cdots\!48}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{35}-\frac{6648463360}{38\!\cdots\!49}a^{23}-\frac{61\!\cdots\!96}{38\!\cdots\!49}a^{22}-\frac{501484093440}{38\!\cdots\!49}a^{21}+\frac{10\!\cdots\!58}{38\!\cdots\!49}a^{20}-\frac{16754127667200}{38\!\cdots\!49}a^{19}+\frac{13\!\cdots\!39}{38\!\cdots\!49}a^{18}-\frac{323381257830400}{38\!\cdots\!49}a^{17}+\frac{13\!\cdots\!80}{38\!\cdots\!49}a^{16}-\frac{39\!\cdots\!96}{38\!\cdots\!49}a^{15}-\frac{54\!\cdots\!66}{38\!\cdots\!49}a^{14}-\frac{31\!\cdots\!20}{38\!\cdots\!49}a^{13}-\frac{28\!\cdots\!25}{38\!\cdots\!49}a^{12}-\frac{16\!\cdots\!80}{38\!\cdots\!49}a^{11}-\frac{86\!\cdots\!96}{38\!\cdots\!49}a^{10}-\frac{57\!\cdots\!00}{38\!\cdots\!49}a^{9}+\frac{19\!\cdots\!44}{38\!\cdots\!49}a^{8}-\frac{12\!\cdots\!00}{38\!\cdots\!49}a^{7}-\frac{37\!\cdots\!13}{38\!\cdots\!49}a^{6}-\frac{13\!\cdots\!72}{38\!\cdots\!49}a^{5}-\frac{60\!\cdots\!78}{38\!\cdots\!49}a^{4}-\frac{74\!\cdots\!60}{38\!\cdots\!49}a^{3}+\frac{12\!\cdots\!50}{38\!\cdots\!49}a^{2}-\frac{11\!\cdots\!40}{38\!\cdots\!49}a+\frac{16\!\cdots\!34}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{36}+\frac{15\!\cdots\!73}{38\!\cdots\!49}a^{23}+\frac{136768389120}{38\!\cdots\!49}a^{22}+\frac{17\!\cdots\!24}{38\!\cdots\!49}a^{21}+\frac{10052476600320}{38\!\cdots\!49}a^{20}+\frac{17\!\cdots\!46}{38\!\cdots\!49}a^{19}+\frac{323381257830400}{38\!\cdots\!49}a^{18}+\frac{10\!\cdots\!62}{38\!\cdots\!49}a^{17}+\frac{59\!\cdots\!44}{38\!\cdots\!49}a^{16}-\frac{98\!\cdots\!88}{38\!\cdots\!49}a^{15}+\frac{68\!\cdots\!00}{38\!\cdots\!49}a^{14}-\frac{18\!\cdots\!31}{38\!\cdots\!49}a^{13}+\frac{50\!\cdots\!40}{38\!\cdots\!49}a^{12}-\frac{12\!\cdots\!79}{38\!\cdots\!49}a^{11}-\frac{14\!\cdots\!09}{38\!\cdots\!49}a^{10}-\frac{17\!\cdots\!22}{38\!\cdots\!49}a^{9}-\frac{47\!\cdots\!98}{38\!\cdots\!49}a^{8}+\frac{12\!\cdots\!87}{38\!\cdots\!49}a^{7}+\frac{10\!\cdots\!01}{38\!\cdots\!49}a^{6}+\frac{21\!\cdots\!39}{38\!\cdots\!49}a^{5}-\frac{30\!\cdots\!47}{38\!\cdots\!49}a^{4}+\frac{14\!\cdots\!49}{38\!\cdots\!49}a^{3}+\frac{56\!\cdots\!71}{38\!\cdots\!49}a^{2}+\frac{16\!\cdots\!52}{38\!\cdots\!49}a+\frac{22\!\cdots\!20}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{37}+\frac{168681013248}{38\!\cdots\!49}a^{23}-\frac{16\!\cdots\!37}{38\!\cdots\!49}a^{22}+\frac{12988438020096}{38\!\cdots\!49}a^{21}-\frac{10\!\cdots\!52}{38\!\cdots\!49}a^{20}+\frac{440819714621440}{38\!\cdots\!49}a^{19}+\frac{49\!\cdots\!96}{38\!\cdots\!49}a^{18}+\frac{86\!\cdots\!56}{38\!\cdots\!49}a^{17}-\frac{59\!\cdots\!90}{38\!\cdots\!49}a^{16}+\frac{10\!\cdots\!56}{38\!\cdots\!49}a^{15}+\frac{14\!\cdots\!20}{38\!\cdots\!49}a^{14}+\frac{86\!\cdots\!96}{38\!\cdots\!49}a^{13}-\frac{66\!\cdots\!24}{38\!\cdots\!49}a^{12}+\frac{76\!\cdots\!63}{38\!\cdots\!49}a^{11}-\frac{34\!\cdots\!34}{38\!\cdots\!49}a^{10}+\frac{44\!\cdots\!44}{38\!\cdots\!49}a^{9}+\frac{11\!\cdots\!73}{38\!\cdots\!49}a^{8}-\frac{13\!\cdots\!57}{38\!\cdots\!49}a^{7}+\frac{14\!\cdots\!51}{38\!\cdots\!49}a^{6}+\frac{32\!\cdots\!58}{38\!\cdots\!49}a^{5}-\frac{82\!\cdots\!97}{38\!\cdots\!49}a^{4}+\frac{16\!\cdots\!43}{38\!\cdots\!49}a^{3}-\frac{10\!\cdots\!00}{38\!\cdots\!49}a^{2}-\frac{53\!\cdots\!53}{38\!\cdots\!49}a-\frac{14\!\cdots\!64}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{38}+\frac{16\!\cdots\!75}{38\!\cdots\!49}a^{23}-\frac{3204939251712}{38\!\cdots\!49}a^{22}-\frac{20\!\cdots\!19}{38\!\cdots\!49}a^{21}-\frac{239302130794496}{38\!\cdots\!49}a^{20}-\frac{18\!\cdots\!25}{38\!\cdots\!49}a^{19}-\frac{77\!\cdots\!84}{38\!\cdots\!49}a^{18}+\frac{13\!\cdots\!47}{38\!\cdots\!49}a^{17}-\frac{14\!\cdots\!76}{38\!\cdots\!49}a^{16}+\frac{13\!\cdots\!10}{38\!\cdots\!49}a^{15}-\frac{16\!\cdots\!80}{38\!\cdots\!49}a^{14}-\frac{16\!\cdots\!37}{38\!\cdots\!49}a^{13}-\frac{97\!\cdots\!57}{38\!\cdots\!49}a^{12}-\frac{74\!\cdots\!65}{38\!\cdots\!49}a^{11}+\frac{13\!\cdots\!32}{38\!\cdots\!49}a^{10}+\frac{98\!\cdots\!83}{38\!\cdots\!49}a^{9}+\frac{30\!\cdots\!47}{38\!\cdots\!49}a^{8}+\frac{97\!\cdots\!15}{38\!\cdots\!49}a^{7}-\frac{42\!\cdots\!30}{38\!\cdots\!49}a^{6}-\frac{14\!\cdots\!45}{38\!\cdots\!49}a^{5}+\frac{15\!\cdots\!46}{38\!\cdots\!49}a^{4}-\frac{49\!\cdots\!49}{38\!\cdots\!49}a^{3}+\frac{12\!\cdots\!22}{38\!\cdots\!49}a^{2}+\frac{64\!\cdots\!36}{38\!\cdots\!49}a-\frac{18\!\cdots\!87}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{39}-\frac{4032020348928}{38\!\cdots\!49}a^{23}+\frac{17\!\cdots\!88}{38\!\cdots\!49}a^{22}-\frac{315393591738368}{38\!\cdots\!49}a^{21}+\frac{15\!\cdots\!40}{38\!\cdots\!49}a^{20}-\frac{10\!\cdots\!64}{38\!\cdots\!49}a^{19}-\frac{34\!\cdots\!48}{38\!\cdots\!49}a^{18}-\frac{21\!\cdots\!40}{38\!\cdots\!49}a^{17}-\frac{24\!\cdots\!84}{38\!\cdots\!49}a^{16}+\frac{11\!\cdots\!37}{38\!\cdots\!49}a^{15}-\frac{40\!\cdots\!54}{38\!\cdots\!49}a^{14}+\frac{12\!\cdots\!58}{38\!\cdots\!49}a^{13}-\frac{16\!\cdots\!42}{38\!\cdots\!49}a^{12}-\frac{15\!\cdots\!66}{38\!\cdots\!49}a^{11}-\frac{15\!\cdots\!88}{38\!\cdots\!49}a^{10}+\frac{23\!\cdots\!09}{38\!\cdots\!49}a^{9}-\frac{57\!\cdots\!08}{38\!\cdots\!49}a^{8}-\frac{13\!\cdots\!11}{38\!\cdots\!49}a^{7}+\frac{92\!\cdots\!70}{38\!\cdots\!49}a^{6}-\frac{10\!\cdots\!45}{38\!\cdots\!49}a^{5}+\frac{98\!\cdots\!14}{38\!\cdots\!49}a^{4}+\frac{31\!\cdots\!12}{38\!\cdots\!49}a^{3}-\frac{11\!\cdots\!94}{38\!\cdots\!49}a^{2}-\frac{94\!\cdots\!30}{38\!\cdots\!49}a-\frac{18\!\cdots\!29}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{40}+\frac{13\!\cdots\!42}{38\!\cdots\!49}a^{23}+\frac{71680361758720}{38\!\cdots\!49}a^{22}-\frac{15\!\cdots\!53}{38\!\cdots\!49}a^{21}+\frac{54\!\cdots\!32}{38\!\cdots\!49}a^{20}-\frac{17\!\cdots\!51}{38\!\cdots\!49}a^{19}+\frac{17\!\cdots\!00}{38\!\cdots\!49}a^{18}-\frac{11\!\cdots\!03}{38\!\cdots\!49}a^{17}-\frac{50\!\cdots\!09}{38\!\cdots\!49}a^{16}-\frac{16\!\cdots\!95}{38\!\cdots\!49}a^{15}+\frac{46\!\cdots\!10}{38\!\cdots\!49}a^{14}+\frac{43\!\cdots\!55}{38\!\cdots\!49}a^{13}+\frac{80\!\cdots\!16}{38\!\cdots\!49}a^{12}+\frac{11\!\cdots\!08}{38\!\cdots\!49}a^{11}+\frac{10\!\cdots\!93}{38\!\cdots\!49}a^{10}-\frac{96\!\cdots\!78}{38\!\cdots\!49}a^{9}-\frac{85\!\cdots\!43}{38\!\cdots\!49}a^{8}-\frac{17\!\cdots\!18}{38\!\cdots\!49}a^{7}+\frac{17\!\cdots\!64}{38\!\cdots\!49}a^{6}-\frac{27\!\cdots\!70}{38\!\cdots\!49}a^{5}-\frac{76\!\cdots\!01}{38\!\cdots\!49}a^{4}-\frac{13\!\cdots\!92}{38\!\cdots\!49}a^{3}-\frac{81\!\cdots\!68}{38\!\cdots\!49}a^{2}-\frac{11\!\cdots\!47}{38\!\cdots\!49}a+\frac{86\!\cdots\!81}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{41}+\frac{91840463503360}{38\!\cdots\!49}a^{23}+\frac{40\!\cdots\!32}{38\!\cdots\!49}a^{22}+\frac{72\!\cdots\!12}{38\!\cdots\!49}a^{21}-\frac{73\!\cdots\!63}{38\!\cdots\!49}a^{20}+\frac{25\!\cdots\!00}{38\!\cdots\!49}a^{19}+\frac{18\!\cdots\!27}{38\!\cdots\!49}a^{18}+\frac{11\!\cdots\!51}{38\!\cdots\!49}a^{17}-\frac{11\!\cdots\!14}{38\!\cdots\!49}a^{16}+\frac{16\!\cdots\!96}{38\!\cdots\!49}a^{15}+\frac{13\!\cdots\!30}{38\!\cdots\!49}a^{14}-\frac{52\!\cdots\!95}{38\!\cdots\!49}a^{13}+\frac{34\!\cdots\!47}{38\!\cdots\!49}a^{12}+\frac{10\!\cdots\!13}{38\!\cdots\!49}a^{11}-\frac{16\!\cdots\!25}{38\!\cdots\!49}a^{10}-\frac{35\!\cdots\!29}{38\!\cdots\!49}a^{9}-\frac{12\!\cdots\!91}{38\!\cdots\!49}a^{8}-\frac{16\!\cdots\!11}{38\!\cdots\!49}a^{7}+\frac{37\!\cdots\!93}{38\!\cdots\!49}a^{6}+\frac{17\!\cdots\!14}{38\!\cdots\!49}a^{5}-\frac{25\!\cdots\!31}{38\!\cdots\!49}a^{4}-\frac{11\!\cdots\!93}{38\!\cdots\!49}a^{3}+\frac{18\!\cdots\!20}{38\!\cdots\!49}a^{2}-\frac{16\!\cdots\!82}{38\!\cdots\!49}a+\frac{37\!\cdots\!12}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{42}+\frac{19\!\cdots\!16}{38\!\cdots\!49}a^{23}-\frac{15\!\cdots\!48}{38\!\cdots\!49}a^{22}+\frac{15\!\cdots\!18}{38\!\cdots\!49}a^{21}-\frac{11\!\cdots\!20}{38\!\cdots\!49}a^{20}+\frac{41\!\cdots\!91}{38\!\cdots\!49}a^{19}-\frac{67\!\cdots\!51}{38\!\cdots\!49}a^{18}+\frac{13\!\cdots\!96}{38\!\cdots\!49}a^{17}-\frac{62\!\cdots\!29}{38\!\cdots\!49}a^{16}+\frac{16\!\cdots\!27}{38\!\cdots\!49}a^{15}+\frac{86\!\cdots\!25}{38\!\cdots\!49}a^{14}+\frac{36\!\cdots\!53}{38\!\cdots\!49}a^{13}+\frac{16\!\cdots\!69}{38\!\cdots\!49}a^{12}+\frac{58\!\cdots\!44}{38\!\cdots\!49}a^{11}-\frac{90\!\cdots\!25}{38\!\cdots\!49}a^{10}-\frac{40\!\cdots\!00}{38\!\cdots\!49}a^{9}-\frac{12\!\cdots\!63}{38\!\cdots\!49}a^{8}+\frac{39\!\cdots\!42}{38\!\cdots\!49}a^{7}-\frac{99\!\cdots\!51}{38\!\cdots\!49}a^{6}-\frac{69\!\cdots\!99}{38\!\cdots\!49}a^{5}-\frac{78\!\cdots\!28}{38\!\cdots\!49}a^{4}+\frac{12\!\cdots\!59}{38\!\cdots\!49}a^{3}-\frac{13\!\cdots\!84}{38\!\cdots\!49}a^{2}-\frac{11\!\cdots\!26}{38\!\cdots\!49}a-\frac{12\!\cdots\!22}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{43}-\frac{20\!\cdots\!08}{38\!\cdots\!49}a^{23}-\frac{14\!\cdots\!22}{38\!\cdots\!49}a^{22}-\frac{16\!\cdots\!40}{38\!\cdots\!49}a^{21}-\frac{66\!\cdots\!21}{38\!\cdots\!49}a^{20}-\frac{17\!\cdots\!51}{38\!\cdots\!49}a^{19}+\frac{76\!\cdots\!84}{38\!\cdots\!49}a^{18}-\frac{14\!\cdots\!79}{38\!\cdots\!49}a^{17}-\frac{14\!\cdots\!98}{38\!\cdots\!49}a^{16}+\frac{38\!\cdots\!59}{38\!\cdots\!49}a^{15}+\frac{18\!\cdots\!10}{38\!\cdots\!49}a^{14}+\frac{13\!\cdots\!34}{38\!\cdots\!49}a^{13}-\frac{12\!\cdots\!89}{38\!\cdots\!49}a^{12}+\frac{36\!\cdots\!36}{38\!\cdots\!49}a^{11}-\frac{34\!\cdots\!20}{38\!\cdots\!49}a^{10}+\frac{12\!\cdots\!88}{38\!\cdots\!49}a^{9}+\frac{18\!\cdots\!67}{38\!\cdots\!49}a^{8}-\frac{10\!\cdots\!87}{38\!\cdots\!49}a^{7}-\frac{17\!\cdots\!42}{38\!\cdots\!49}a^{6}+\frac{36\!\cdots\!07}{38\!\cdots\!49}a^{5}+\frac{14\!\cdots\!79}{38\!\cdots\!49}a^{4}+\frac{52\!\cdots\!68}{38\!\cdots\!49}a^{3}+\frac{10\!\cdots\!91}{38\!\cdots\!49}a^{2}+\frac{18\!\cdots\!14}{38\!\cdots\!49}a-\frac{94\!\cdots\!46}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{44}-\frac{16\!\cdots\!38}{38\!\cdots\!49}a^{23}+\frac{32\!\cdots\!28}{38\!\cdots\!49}a^{22}-\frac{66\!\cdots\!48}{38\!\cdots\!49}a^{21}-\frac{13\!\cdots\!93}{38\!\cdots\!49}a^{20}+\frac{47\!\cdots\!04}{38\!\cdots\!49}a^{19}-\frac{17\!\cdots\!38}{38\!\cdots\!49}a^{18}-\frac{27\!\cdots\!24}{38\!\cdots\!49}a^{17}+\frac{34\!\cdots\!60}{38\!\cdots\!49}a^{16}+\frac{15\!\cdots\!74}{38\!\cdots\!49}a^{15}+\frac{59\!\cdots\!53}{38\!\cdots\!49}a^{14}-\frac{70\!\cdots\!76}{38\!\cdots\!49}a^{13}-\frac{15\!\cdots\!09}{38\!\cdots\!49}a^{12}+\frac{12\!\cdots\!60}{38\!\cdots\!49}a^{11}-\frac{29\!\cdots\!16}{38\!\cdots\!49}a^{10}+\frac{71\!\cdots\!83}{38\!\cdots\!49}a^{9}+\frac{20\!\cdots\!44}{38\!\cdots\!49}a^{8}-\frac{46\!\cdots\!84}{38\!\cdots\!49}a^{7}+\frac{64\!\cdots\!53}{38\!\cdots\!49}a^{6}+\frac{18\!\cdots\!40}{38\!\cdots\!49}a^{5}+\frac{18\!\cdots\!50}{38\!\cdots\!49}a^{4}+\frac{19\!\cdots\!13}{38\!\cdots\!49}a^{3}+\frac{15\!\cdots\!19}{38\!\cdots\!49}a^{2}-\frac{44\!\cdots\!83}{38\!\cdots\!49}a-\frac{10\!\cdots\!80}{38\!\cdots\!49}$, $\frac{1}{38\!\cdots\!49}a^{45}+\frac{42\!\cdots\!40}{38\!\cdots\!49}a^{23}+\frac{17\!\cdots\!40}{38\!\cdots\!49}a^{22}-\frac{40\!\cdots\!89}{38\!\cdots\!49}a^{21}-\frac{50\!\cdots\!23}{38\!\cdots\!49}a^{20}-\frac{18\!\cdots\!68}{38\!\cdots\!49}a^{19}-\frac{18\!\cdots\!55}{38\!\cdots\!49}a^{18}+\frac{16\!\cdots\!85}{38\!\cdots\!49}a^{17}-\frac{88\!\cdots\!51}{38\!\cdots\!49}a^{16}-\frac{92\!\cdots\!18}{38\!\cdots\!49}a^{15}-\frac{10\!\cdots\!27}{38\!\cdots\!49}a^{14}-\frac{36\!\cdots\!09}{38\!\cdots\!49}a^{13}-\frac{15\!\cdots\!54}{38\!\cdots\!49}a^{12}+\frac{18\!\cdots\!53}{38\!\cdots\!49}a^{11}-\frac{84\!\cdots\!96}{38\!\cdots\!49}a^{10}-\frac{15\!\cdots\!93}{38\!\cdots\!49}a^{9}+\frac{15\!\cdots\!27}{38\!\cdots\!49}a^{8}+\frac{10\!\cdots\!23}{38\!\cdots\!49}a^{7}-\frac{11\!\cdots\!79}{38\!\cdots\!49}a^{6}-\frac{14\!\cdots\!39}{38\!\cdots\!49}a^{5}-\frac{17\!\cdots\!03}{38\!\cdots\!49}a^{4}+\frac{12\!\cdots\!33}{38\!\cdots\!49}a^{3}+\frac{19\!\cdots\!60}{38\!\cdots\!49}a^{2}+\frac{61\!\cdots\!63}{38\!\cdots\!49}a+\frac{34\!\cdots\!94}{38\!\cdots\!49}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $22$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^46 - x^45 + 189*x^44 - 189*x^43 + 16733*x^42 - 16733*x^41 + 922141*x^40 - 922141*x^39 + 35453981*x^38 - 35453981*x^37 + 1010238493*x^36 - 1010238493*x^35 + 22122644509*x^34 - 22122644509*x^33 + 381033546781*x^32 - 381033546781*x^31 + 5240134992925*x^30 - 5240134992925*x^29 + 58093519143965*x^28 - 58093519143965*x^27 + 522060523799581*x^26 - 522060523799581*x^25 + 3812008374993949*x^24 - 3812008374993949*x^23 + 22611710381818909*x^22 - 22611710381818909*x^21 + 108699033598592029*x^20 - 108699033598592029*x^19 + 421743845295948829*x^18 - 421743845295948829*x^17 + 1313921558633415709*x^16 - 1313921558633415709*x^15 + 3270956542728504349*x^14 - 3270956542728504349*x^13 + 6494308281238062109*x^12 - 6494308281238062109*x^11 + 10347510359456384029*x^10 - 10347510359456384029*x^9 + 13534369221140710429*x^8 - 13534369221140710429*x^7 + 15234027280705684509*x^6 - 15234027280705684509*x^5 + 15756998991341061149*x^4 - 15756998991341061149*x^3 + 15833067603797115933*x^2 - 15833067603797115933*x + 15836374934773466141)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^46 - x^45 + 189*x^44 - 189*x^43 + 16733*x^42 - 16733*x^41 + 922141*x^40 - 922141*x^39 + 35453981*x^38 - 35453981*x^37 + 1010238493*x^36 - 1010238493*x^35 + 22122644509*x^34 - 22122644509*x^33 + 381033546781*x^32 - 381033546781*x^31 + 5240134992925*x^30 - 5240134992925*x^29 + 58093519143965*x^28 - 58093519143965*x^27 + 522060523799581*x^26 - 522060523799581*x^25 + 3812008374993949*x^24 - 3812008374993949*x^23 + 22611710381818909*x^22 - 22611710381818909*x^21 + 108699033598592029*x^20 - 108699033598592029*x^19 + 421743845295948829*x^18 - 421743845295948829*x^17 + 1313921558633415709*x^16 - 1313921558633415709*x^15 + 3270956542728504349*x^14 - 3270956542728504349*x^13 + 6494308281238062109*x^12 - 6494308281238062109*x^11 + 10347510359456384029*x^10 - 10347510359456384029*x^9 + 13534369221140710429*x^8 - 13534369221140710429*x^7 + 15234027280705684509*x^6 - 15234027280705684509*x^5 + 15756998991341061149*x^4 - 15756998991341061149*x^3 + 15833067603797115933*x^2 - 15833067603797115933*x + 15836374934773466141, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^46 - x^45 + 189*x^44 - 189*x^43 + 16733*x^42 - 16733*x^41 + 922141*x^40 - 922141*x^39 + 35453981*x^38 - 35453981*x^37 + 1010238493*x^36 - 1010238493*x^35 + 22122644509*x^34 - 22122644509*x^33 + 381033546781*x^32 - 381033546781*x^31 + 5240134992925*x^30 - 5240134992925*x^29 + 58093519143965*x^28 - 58093519143965*x^27 + 522060523799581*x^26 - 522060523799581*x^25 + 3812008374993949*x^24 - 3812008374993949*x^23 + 22611710381818909*x^22 - 22611710381818909*x^21 + 108699033598592029*x^20 - 108699033598592029*x^19 + 421743845295948829*x^18 - 421743845295948829*x^17 + 1313921558633415709*x^16 - 1313921558633415709*x^15 + 3270956542728504349*x^14 - 3270956542728504349*x^13 + 6494308281238062109*x^12 - 6494308281238062109*x^11 + 10347510359456384029*x^10 - 10347510359456384029*x^9 + 13534369221140710429*x^8 - 13534369221140710429*x^7 + 15234027280705684509*x^6 - 15234027280705684509*x^5 + 15756998991341061149*x^4 - 15756998991341061149*x^3 + 15833067603797115933*x^2 - 15833067603797115933*x + 15836374934773466141);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 - x^45 + 189*x^44 - 189*x^43 + 16733*x^42 - 16733*x^41 + 922141*x^40 - 922141*x^39 + 35453981*x^38 - 35453981*x^37 + 1010238493*x^36 - 1010238493*x^35 + 22122644509*x^34 - 22122644509*x^33 + 381033546781*x^32 - 381033546781*x^31 + 5240134992925*x^30 - 5240134992925*x^29 + 58093519143965*x^28 - 58093519143965*x^27 + 522060523799581*x^26 - 522060523799581*x^25 + 3812008374993949*x^24 - 3812008374993949*x^23 + 22611710381818909*x^22 - 22611710381818909*x^21 + 108699033598592029*x^20 - 108699033598592029*x^19 + 421743845295948829*x^18 - 421743845295948829*x^17 + 1313921558633415709*x^16 - 1313921558633415709*x^15 + 3270956542728504349*x^14 - 3270956542728504349*x^13 + 6494308281238062109*x^12 - 6494308281238062109*x^11 + 10347510359456384029*x^10 - 10347510359456384029*x^9 + 13534369221140710429*x^8 - 13534369221140710429*x^7 + 15234027280705684509*x^6 - 15234027280705684509*x^5 + 15756998991341061149*x^4 - 15756998991341061149*x^3 + 15833067603797115933*x^2 - 15833067603797115933*x + 15836374934773466141);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{46}$ (as 46T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 46
The 46 conjugacy class representatives for $C_{46}$
Character table for $C_{46}$

Intermediate fields

\(\Q(\sqrt{-799}) \), \(\Q(\zeta_{47})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $23^{2}$ $46$ $23^{2}$ $46$ $23^{2}$ $46$ R $46$ $23^{2}$ $23^{2}$ $23^{2}$ $46$ $23^{2}$ $46$ R $23^{2}$ $23^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(17\) Copy content Toggle raw display Deg $46$$2$$23$$23$
\(47\) Copy content Toggle raw display Deg $46$$46$$1$$45$