Properties

Label 24.4.641...125.4
Degree $24$
Signature $[4, 10]$
Discriminant $6.420\times 10^{32}$
Root discriminant \(23.28\)
Ramified primes $5,13$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\GL(2,5)$ (as 24T1353)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 6*x^23 + 11*x^22 - x^21 - 42*x^20 + 132*x^19 - 157*x^18 - 93*x^17 + 463*x^16 - 504*x^15 + 89*x^14 + 756*x^13 - 1626*x^12 + 841*x^11 + 2572*x^10 - 3447*x^9 - 1348*x^8 + 4593*x^7 - 688*x^6 - 3121*x^5 + 1191*x^4 + 1049*x^3 - 514*x^2 - 151*x + 83)
 
gp: K = bnfinit(y^24 - 6*y^23 + 11*y^22 - y^21 - 42*y^20 + 132*y^19 - 157*y^18 - 93*y^17 + 463*y^16 - 504*y^15 + 89*y^14 + 756*y^13 - 1626*y^12 + 841*y^11 + 2572*y^10 - 3447*y^9 - 1348*y^8 + 4593*y^7 - 688*y^6 - 3121*y^5 + 1191*y^4 + 1049*y^3 - 514*y^2 - 151*y + 83, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - 6*x^23 + 11*x^22 - x^21 - 42*x^20 + 132*x^19 - 157*x^18 - 93*x^17 + 463*x^16 - 504*x^15 + 89*x^14 + 756*x^13 - 1626*x^12 + 841*x^11 + 2572*x^10 - 3447*x^9 - 1348*x^8 + 4593*x^7 - 688*x^6 - 3121*x^5 + 1191*x^4 + 1049*x^3 - 514*x^2 - 151*x + 83);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 6*x^23 + 11*x^22 - x^21 - 42*x^20 + 132*x^19 - 157*x^18 - 93*x^17 + 463*x^16 - 504*x^15 + 89*x^14 + 756*x^13 - 1626*x^12 + 841*x^11 + 2572*x^10 - 3447*x^9 - 1348*x^8 + 4593*x^7 - 688*x^6 - 3121*x^5 + 1191*x^4 + 1049*x^3 - 514*x^2 - 151*x + 83)
 

\( x^{24} - 6 x^{23} + 11 x^{22} - x^{21} - 42 x^{20} + 132 x^{19} - 157 x^{18} - 93 x^{17} + 463 x^{16} + \cdots + 83 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $24$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(641953627807088196277618408203125\) \(\medspace = 5^{31}\cdot 13^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(23.28\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{31/20}13^{1/2}\approx 43.68930970521314$
Ramified primes:   \(5\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5}a^{14}-\frac{1}{5}a^{13}+\frac{1}{5}a^{12}-\frac{1}{5}a^{11}-\frac{2}{5}a^{10}+\frac{1}{5}a^{9}-\frac{1}{5}a^{8}+\frac{1}{5}a^{7}-\frac{1}{5}a^{6}-\frac{2}{5}a^{5}-\frac{1}{5}a^{4}+\frac{1}{5}a^{3}-\frac{1}{5}a^{2}+\frac{1}{5}a+\frac{2}{5}$, $\frac{1}{5}a^{15}+\frac{2}{5}a^{11}-\frac{1}{5}a^{10}+\frac{2}{5}a^{6}+\frac{2}{5}a^{5}-\frac{2}{5}a+\frac{2}{5}$, $\frac{1}{5}a^{16}+\frac{2}{5}a^{12}-\frac{1}{5}a^{11}+\frac{2}{5}a^{7}+\frac{2}{5}a^{6}-\frac{2}{5}a^{2}+\frac{2}{5}a$, $\frac{1}{5}a^{17}+\frac{2}{5}a^{13}-\frac{1}{5}a^{12}+\frac{2}{5}a^{8}+\frac{2}{5}a^{7}-\frac{2}{5}a^{3}+\frac{2}{5}a^{2}$, $\frac{1}{5}a^{18}+\frac{1}{5}a^{13}-\frac{2}{5}a^{12}+\frac{2}{5}a^{11}-\frac{1}{5}a^{10}-\frac{1}{5}a^{8}-\frac{2}{5}a^{7}+\frac{2}{5}a^{6}-\frac{1}{5}a^{5}+\frac{2}{5}a^{2}-\frac{2}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{19}-\frac{1}{5}a^{13}+\frac{1}{5}a^{12}+\frac{2}{5}a^{10}-\frac{2}{5}a^{9}-\frac{1}{5}a^{8}+\frac{1}{5}a^{7}+\frac{2}{5}a^{5}+\frac{1}{5}a^{4}+\frac{1}{5}a^{3}-\frac{1}{5}a^{2}-\frac{2}{5}$, $\frac{1}{5}a^{20}+\frac{1}{5}a^{12}+\frac{1}{5}a^{11}+\frac{1}{5}a^{10}+\frac{1}{5}a^{7}+\frac{1}{5}a^{6}-\frac{1}{5}a^{5}-\frac{1}{5}a^{2}-\frac{1}{5}a+\frac{2}{5}$, $\frac{1}{5}a^{21}+\frac{1}{5}a^{13}+\frac{1}{5}a^{12}+\frac{1}{5}a^{11}+\frac{1}{5}a^{8}+\frac{1}{5}a^{7}-\frac{1}{5}a^{6}-\frac{1}{5}a^{3}-\frac{1}{5}a^{2}+\frac{2}{5}a$, $\frac{1}{25}a^{22}-\frac{2}{25}a^{21}-\frac{1}{25}a^{20}-\frac{2}{25}a^{19}-\frac{1}{25}a^{18}+\frac{1}{25}a^{17}+\frac{1}{25}a^{16}+\frac{2}{25}a^{15}+\frac{2}{25}a^{14}+\frac{6}{25}a^{13}-\frac{1}{5}a^{12}-\frac{8}{25}a^{11}+\frac{7}{25}a^{10}+\frac{11}{25}a^{9}-\frac{2}{25}a^{8}+\frac{11}{25}a^{7}+\frac{9}{25}a^{6}-\frac{2}{5}a^{5}+\frac{11}{25}a^{4}-\frac{12}{25}a^{3}-\frac{1}{25}a^{2}-\frac{12}{25}a-\frac{8}{25}$, $\frac{1}{10\!\cdots\!25}a^{23}+\frac{19\!\cdots\!13}{10\!\cdots\!25}a^{22}-\frac{84\!\cdots\!51}{10\!\cdots\!25}a^{21}+\frac{82\!\cdots\!73}{10\!\cdots\!25}a^{20}-\frac{46\!\cdots\!36}{10\!\cdots\!25}a^{19}-\frac{34\!\cdots\!19}{10\!\cdots\!25}a^{18}+\frac{83\!\cdots\!76}{10\!\cdots\!25}a^{17}+\frac{83\!\cdots\!97}{10\!\cdots\!25}a^{16}-\frac{10\!\cdots\!53}{10\!\cdots\!25}a^{15}+\frac{82\!\cdots\!01}{10\!\cdots\!25}a^{14}-\frac{61\!\cdots\!26}{20\!\cdots\!85}a^{13}-\frac{37\!\cdots\!43}{10\!\cdots\!25}a^{12}-\frac{36\!\cdots\!18}{10\!\cdots\!25}a^{11}+\frac{27\!\cdots\!56}{10\!\cdots\!25}a^{10}-\frac{59\!\cdots\!87}{10\!\cdots\!25}a^{9}-\frac{19\!\cdots\!24}{10\!\cdots\!25}a^{8}-\frac{37\!\cdots\!56}{10\!\cdots\!25}a^{7}+\frac{15\!\cdots\!91}{40\!\cdots\!37}a^{6}-\frac{12\!\cdots\!09}{10\!\cdots\!25}a^{5}-\frac{22\!\cdots\!17}{10\!\cdots\!25}a^{4}+\frac{30\!\cdots\!79}{10\!\cdots\!25}a^{3}-\frac{10\!\cdots\!07}{10\!\cdots\!25}a^{2}-\frac{19\!\cdots\!63}{10\!\cdots\!25}a-\frac{45\!\cdots\!56}{40\!\cdots\!37}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{29\!\cdots\!32}{37\!\cdots\!05}a^{23}-\frac{15\!\cdots\!92}{37\!\cdots\!05}a^{22}+\frac{22\!\cdots\!84}{37\!\cdots\!05}a^{21}+\frac{11\!\cdots\!48}{37\!\cdots\!05}a^{20}-\frac{11\!\cdots\!76}{37\!\cdots\!05}a^{19}+\frac{62\!\cdots\!23}{74\!\cdots\!81}a^{18}-\frac{26\!\cdots\!11}{37\!\cdots\!05}a^{17}-\frac{44\!\cdots\!19}{37\!\cdots\!05}a^{16}+\frac{10\!\cdots\!53}{37\!\cdots\!05}a^{15}-\frac{79\!\cdots\!98}{37\!\cdots\!05}a^{14}-\frac{24\!\cdots\!99}{37\!\cdots\!05}a^{13}+\frac{20\!\cdots\!74}{37\!\cdots\!05}a^{12}-\frac{34\!\cdots\!44}{37\!\cdots\!05}a^{11}+\frac{26\!\cdots\!88}{37\!\cdots\!05}a^{10}+\frac{77\!\cdots\!04}{37\!\cdots\!05}a^{9}-\frac{52\!\cdots\!13}{37\!\cdots\!05}a^{8}-\frac{14\!\cdots\!51}{74\!\cdots\!81}a^{7}+\frac{88\!\cdots\!31}{37\!\cdots\!05}a^{6}+\frac{36\!\cdots\!26}{37\!\cdots\!05}a^{5}-\frac{69\!\cdots\!73}{37\!\cdots\!05}a^{4}-\frac{17\!\cdots\!72}{74\!\cdots\!81}a^{3}+\frac{25\!\cdots\!84}{37\!\cdots\!05}a^{2}+\frac{10\!\cdots\!32}{37\!\cdots\!05}a-\frac{37\!\cdots\!31}{37\!\cdots\!05}$, $\frac{16\!\cdots\!56}{10\!\cdots\!25}a^{23}+\frac{76\!\cdots\!94}{10\!\cdots\!25}a^{22}-\frac{51\!\cdots\!73}{10\!\cdots\!25}a^{21}-\frac{43\!\cdots\!92}{20\!\cdots\!85}a^{20}+\frac{74\!\cdots\!67}{10\!\cdots\!25}a^{19}-\frac{13\!\cdots\!03}{10\!\cdots\!25}a^{18}-\frac{76\!\cdots\!84}{10\!\cdots\!25}a^{17}+\frac{96\!\cdots\!69}{20\!\cdots\!85}a^{16}-\frac{64\!\cdots\!03}{10\!\cdots\!25}a^{15}+\frac{87\!\cdots\!83}{10\!\cdots\!25}a^{14}+\frac{71\!\cdots\!67}{10\!\cdots\!25}a^{13}-\frac{15\!\cdots\!72}{10\!\cdots\!25}a^{12}+\frac{15\!\cdots\!77}{10\!\cdots\!25}a^{11}+\frac{14\!\cdots\!03}{10\!\cdots\!25}a^{10}-\frac{57\!\cdots\!31}{10\!\cdots\!25}a^{9}+\frac{23\!\cdots\!89}{20\!\cdots\!85}a^{8}+\frac{73\!\cdots\!33}{10\!\cdots\!25}a^{7}-\frac{46\!\cdots\!47}{10\!\cdots\!25}a^{6}-\frac{54\!\cdots\!76}{10\!\cdots\!25}a^{5}+\frac{49\!\cdots\!69}{10\!\cdots\!25}a^{4}+\frac{22\!\cdots\!12}{10\!\cdots\!25}a^{3}-\frac{45\!\cdots\!12}{20\!\cdots\!85}a^{2}-\frac{36\!\cdots\!31}{10\!\cdots\!25}a+\frac{42\!\cdots\!99}{10\!\cdots\!25}$, $\frac{46\!\cdots\!37}{10\!\cdots\!25}a^{23}-\frac{25\!\cdots\!73}{10\!\cdots\!25}a^{22}+\frac{36\!\cdots\!76}{10\!\cdots\!25}a^{21}+\frac{32\!\cdots\!87}{20\!\cdots\!85}a^{20}-\frac{18\!\cdots\!69}{10\!\cdots\!25}a^{19}+\frac{50\!\cdots\!01}{10\!\cdots\!25}a^{18}-\frac{43\!\cdots\!62}{10\!\cdots\!25}a^{17}-\frac{13\!\cdots\!37}{20\!\cdots\!85}a^{16}+\frac{17\!\cdots\!21}{10\!\cdots\!25}a^{15}-\frac{13\!\cdots\!86}{10\!\cdots\!25}a^{14}-\frac{31\!\cdots\!84}{10\!\cdots\!25}a^{13}+\frac{32\!\cdots\!34}{10\!\cdots\!25}a^{12}-\frac{55\!\cdots\!84}{10\!\cdots\!25}a^{11}+\frac{67\!\cdots\!99}{10\!\cdots\!25}a^{10}+\frac{12\!\cdots\!12}{10\!\cdots\!25}a^{9}-\frac{17\!\cdots\!66}{20\!\cdots\!85}a^{8}-\frac{11\!\cdots\!71}{10\!\cdots\!25}a^{7}+\frac{14\!\cdots\!19}{10\!\cdots\!25}a^{6}+\frac{52\!\cdots\!72}{10\!\cdots\!25}a^{5}-\frac{10\!\cdots\!53}{10\!\cdots\!25}a^{4}-\frac{11\!\cdots\!54}{10\!\cdots\!25}a^{3}+\frac{78\!\cdots\!14}{20\!\cdots\!85}a^{2}+\frac{11\!\cdots\!87}{10\!\cdots\!25}a-\frac{55\!\cdots\!68}{10\!\cdots\!25}$, $\frac{32\!\cdots\!83}{10\!\cdots\!25}a^{23}+\frac{17\!\cdots\!47}{10\!\cdots\!25}a^{22}-\frac{23\!\cdots\!64}{10\!\cdots\!25}a^{21}-\frac{29\!\cdots\!09}{20\!\cdots\!85}a^{20}+\frac{13\!\cdots\!91}{10\!\cdots\!25}a^{19}-\frac{34\!\cdots\!74}{10\!\cdots\!25}a^{18}+\frac{27\!\cdots\!73}{10\!\cdots\!25}a^{17}+\frac{10\!\cdots\!26}{20\!\cdots\!85}a^{16}-\frac{12\!\cdots\!84}{10\!\cdots\!25}a^{15}+\frac{82\!\cdots\!44}{10\!\cdots\!25}a^{14}+\frac{36\!\cdots\!31}{10\!\cdots\!25}a^{13}-\frac{23\!\cdots\!56}{10\!\cdots\!25}a^{12}+\frac{38\!\cdots\!56}{10\!\cdots\!25}a^{11}-\frac{58\!\cdots\!81}{10\!\cdots\!25}a^{10}-\frac{88\!\cdots\!28}{10\!\cdots\!25}a^{9}+\frac{22\!\cdots\!87}{40\!\cdots\!37}a^{8}+\frac{86\!\cdots\!04}{10\!\cdots\!25}a^{7}-\frac{99\!\cdots\!16}{10\!\cdots\!25}a^{6}-\frac{45\!\cdots\!38}{10\!\cdots\!25}a^{5}+\frac{79\!\cdots\!52}{10\!\cdots\!25}a^{4}+\frac{12\!\cdots\!46}{10\!\cdots\!25}a^{3}-\frac{59\!\cdots\!54}{20\!\cdots\!85}a^{2}-\frac{17\!\cdots\!33}{10\!\cdots\!25}a+\frac{44\!\cdots\!42}{10\!\cdots\!25}$, $\frac{10\!\cdots\!42}{10\!\cdots\!25}a^{23}+\frac{56\!\cdots\!74}{10\!\cdots\!25}a^{22}-\frac{80\!\cdots\!08}{10\!\cdots\!25}a^{21}-\frac{40\!\cdots\!81}{10\!\cdots\!25}a^{20}+\frac{41\!\cdots\!12}{10\!\cdots\!25}a^{19}-\frac{11\!\cdots\!02}{10\!\cdots\!25}a^{18}+\frac{94\!\cdots\!98}{10\!\cdots\!25}a^{17}+\frac{15\!\cdots\!96}{10\!\cdots\!25}a^{16}-\frac{38\!\cdots\!94}{10\!\cdots\!25}a^{15}+\frac{28\!\cdots\!53}{10\!\cdots\!25}a^{14}+\frac{17\!\cdots\!07}{20\!\cdots\!85}a^{13}-\frac{73\!\cdots\!39}{10\!\cdots\!25}a^{12}+\frac{12\!\cdots\!06}{10\!\cdots\!25}a^{11}-\frac{95\!\cdots\!47}{10\!\cdots\!25}a^{10}-\frac{27\!\cdots\!76}{10\!\cdots\!25}a^{9}+\frac{18\!\cdots\!58}{10\!\cdots\!25}a^{8}+\frac{26\!\cdots\!62}{10\!\cdots\!25}a^{7}-\frac{63\!\cdots\!23}{20\!\cdots\!85}a^{6}-\frac{13\!\cdots\!72}{10\!\cdots\!25}a^{5}+\frac{24\!\cdots\!69}{10\!\cdots\!25}a^{4}+\frac{34\!\cdots\!57}{10\!\cdots\!25}a^{3}-\frac{91\!\cdots\!36}{10\!\cdots\!25}a^{2}-\frac{45\!\cdots\!84}{10\!\cdots\!25}a+\frac{26\!\cdots\!26}{20\!\cdots\!85}$, $\frac{21\!\cdots\!89}{40\!\cdots\!37}a^{23}-\frac{29\!\cdots\!06}{10\!\cdots\!25}a^{22}+\frac{42\!\cdots\!87}{10\!\cdots\!25}a^{21}+\frac{19\!\cdots\!01}{10\!\cdots\!25}a^{20}-\frac{21\!\cdots\!98}{10\!\cdots\!25}a^{19}+\frac{58\!\cdots\!16}{10\!\cdots\!25}a^{18}-\frac{49\!\cdots\!21}{10\!\cdots\!25}a^{17}-\frac{80\!\cdots\!06}{10\!\cdots\!25}a^{16}+\frac{20\!\cdots\!28}{10\!\cdots\!25}a^{15}-\frac{15\!\cdots\!72}{10\!\cdots\!25}a^{14}-\frac{44\!\cdots\!36}{10\!\cdots\!25}a^{13}+\frac{15\!\cdots\!76}{40\!\cdots\!37}a^{12}-\frac{65\!\cdots\!47}{10\!\cdots\!25}a^{11}+\frac{67\!\cdots\!28}{10\!\cdots\!25}a^{10}+\frac{14\!\cdots\!44}{10\!\cdots\!25}a^{9}-\frac{10\!\cdots\!83}{10\!\cdots\!25}a^{8}-\frac{13\!\cdots\!41}{10\!\cdots\!25}a^{7}+\frac{17\!\cdots\!51}{10\!\cdots\!25}a^{6}+\frac{13\!\cdots\!62}{20\!\cdots\!85}a^{5}-\frac{13\!\cdots\!66}{10\!\cdots\!25}a^{4}-\frac{16\!\cdots\!93}{10\!\cdots\!25}a^{3}+\frac{50\!\cdots\!71}{10\!\cdots\!25}a^{2}+\frac{25\!\cdots\!92}{10\!\cdots\!25}a-\frac{79\!\cdots\!47}{10\!\cdots\!25}$, $\frac{59\!\cdots\!47}{10\!\cdots\!25}a^{23}-\frac{32\!\cdots\!61}{10\!\cdots\!25}a^{22}+\frac{45\!\cdots\!02}{10\!\cdots\!25}a^{21}+\frac{23\!\cdots\!83}{10\!\cdots\!25}a^{20}-\frac{23\!\cdots\!08}{10\!\cdots\!25}a^{19}+\frac{64\!\cdots\!49}{10\!\cdots\!25}a^{18}-\frac{21\!\cdots\!10}{40\!\cdots\!37}a^{17}-\frac{90\!\cdots\!18}{10\!\cdots\!25}a^{16}+\frac{44\!\cdots\!54}{20\!\cdots\!85}a^{15}-\frac{16\!\cdots\!07}{10\!\cdots\!25}a^{14}-\frac{53\!\cdots\!47}{10\!\cdots\!25}a^{13}+\frac{42\!\cdots\!54}{10\!\cdots\!25}a^{12}-\frac{14\!\cdots\!14}{20\!\cdots\!85}a^{11}+\frac{52\!\cdots\!83}{10\!\cdots\!25}a^{10}+\frac{15\!\cdots\!79}{10\!\cdots\!25}a^{9}-\frac{10\!\cdots\!29}{10\!\cdots\!25}a^{8}-\frac{15\!\cdots\!34}{10\!\cdots\!25}a^{7}+\frac{18\!\cdots\!27}{10\!\cdots\!25}a^{6}+\frac{76\!\cdots\!57}{10\!\cdots\!25}a^{5}-\frac{14\!\cdots\!91}{10\!\cdots\!25}a^{4}-\frac{19\!\cdots\!23}{10\!\cdots\!25}a^{3}+\frac{54\!\cdots\!53}{10\!\cdots\!25}a^{2}+\frac{26\!\cdots\!38}{10\!\cdots\!25}a-\frac{81\!\cdots\!59}{10\!\cdots\!25}$, $\frac{43\!\cdots\!51}{10\!\cdots\!25}a^{23}+\frac{22\!\cdots\!51}{10\!\cdots\!25}a^{22}-\frac{29\!\cdots\!92}{10\!\cdots\!25}a^{21}-\frac{19\!\cdots\!47}{10\!\cdots\!25}a^{20}+\frac{16\!\cdots\!93}{10\!\cdots\!25}a^{19}-\frac{87\!\cdots\!84}{20\!\cdots\!85}a^{18}+\frac{32\!\cdots\!83}{10\!\cdots\!25}a^{17}+\frac{66\!\cdots\!12}{10\!\cdots\!25}a^{16}-\frac{14\!\cdots\!74}{10\!\cdots\!25}a^{15}+\frac{99\!\cdots\!82}{10\!\cdots\!25}a^{14}+\frac{40\!\cdots\!99}{10\!\cdots\!25}a^{13}-\frac{29\!\cdots\!67}{10\!\cdots\!25}a^{12}+\frac{46\!\cdots\!21}{10\!\cdots\!25}a^{11}+\frac{12\!\cdots\!47}{10\!\cdots\!25}a^{10}-\frac{10\!\cdots\!24}{10\!\cdots\!25}a^{9}+\frac{59\!\cdots\!06}{10\!\cdots\!25}a^{8}+\frac{21\!\cdots\!46}{20\!\cdots\!85}a^{7}-\frac{11\!\cdots\!69}{10\!\cdots\!25}a^{6}-\frac{61\!\cdots\!96}{10\!\cdots\!25}a^{5}+\frac{85\!\cdots\!51}{10\!\cdots\!25}a^{4}+\frac{19\!\cdots\!43}{10\!\cdots\!25}a^{3}-\frac{29\!\cdots\!97}{10\!\cdots\!25}a^{2}-\frac{64\!\cdots\!39}{20\!\cdots\!85}a+\frac{40\!\cdots\!98}{10\!\cdots\!25}$, $\frac{10\!\cdots\!92}{20\!\cdots\!85}a^{23}+\frac{29\!\cdots\!48}{10\!\cdots\!25}a^{22}-\frac{44\!\cdots\!36}{10\!\cdots\!25}a^{21}-\frac{18\!\cdots\!33}{10\!\cdots\!25}a^{20}+\frac{21\!\cdots\!64}{10\!\cdots\!25}a^{19}-\frac{60\!\cdots\!48}{10\!\cdots\!25}a^{18}+\frac{53\!\cdots\!33}{10\!\cdots\!25}a^{17}+\frac{79\!\cdots\!73}{10\!\cdots\!25}a^{16}-\frac{21\!\cdots\!14}{10\!\cdots\!25}a^{15}+\frac{16\!\cdots\!71}{10\!\cdots\!25}a^{14}+\frac{39\!\cdots\!13}{10\!\cdots\!25}a^{13}-\frac{78\!\cdots\!41}{20\!\cdots\!85}a^{12}+\frac{67\!\cdots\!81}{10\!\cdots\!25}a^{11}-\frac{91\!\cdots\!09}{10\!\cdots\!25}a^{10}-\frac{14\!\cdots\!92}{10\!\cdots\!25}a^{9}+\frac{10\!\cdots\!24}{10\!\cdots\!25}a^{8}+\frac{13\!\cdots\!18}{10\!\cdots\!25}a^{7}-\frac{17\!\cdots\!98}{10\!\cdots\!25}a^{6}-\frac{12\!\cdots\!72}{20\!\cdots\!85}a^{5}+\frac{13\!\cdots\!88}{10\!\cdots\!25}a^{4}+\frac{13\!\cdots\!69}{10\!\cdots\!25}a^{3}-\frac{51\!\cdots\!98}{10\!\cdots\!25}a^{2}-\frac{14\!\cdots\!61}{10\!\cdots\!25}a+\frac{76\!\cdots\!71}{10\!\cdots\!25}$, $\frac{34\!\cdots\!13}{10\!\cdots\!25}a^{23}+\frac{17\!\cdots\!51}{10\!\cdots\!25}a^{22}-\frac{22\!\cdots\!42}{10\!\cdots\!25}a^{21}-\frac{16\!\cdots\!64}{10\!\cdots\!25}a^{20}+\frac{13\!\cdots\!98}{10\!\cdots\!25}a^{19}-\frac{34\!\cdots\!93}{10\!\cdots\!25}a^{18}+\frac{24\!\cdots\!77}{10\!\cdots\!25}a^{17}+\frac{53\!\cdots\!99}{10\!\cdots\!25}a^{16}-\frac{11\!\cdots\!16}{10\!\cdots\!25}a^{15}+\frac{75\!\cdots\!07}{10\!\cdots\!25}a^{14}+\frac{69\!\cdots\!08}{20\!\cdots\!85}a^{13}-\frac{23\!\cdots\!51}{10\!\cdots\!25}a^{12}+\frac{36\!\cdots\!64}{10\!\cdots\!25}a^{11}+\frac{21\!\cdots\!62}{10\!\cdots\!25}a^{10}-\frac{87\!\cdots\!09}{10\!\cdots\!25}a^{9}+\frac{44\!\cdots\!42}{10\!\cdots\!25}a^{8}+\frac{86\!\cdots\!48}{10\!\cdots\!25}a^{7}-\frac{16\!\cdots\!86}{20\!\cdots\!85}a^{6}-\frac{51\!\cdots\!28}{10\!\cdots\!25}a^{5}+\frac{64\!\cdots\!06}{10\!\cdots\!25}a^{4}+\frac{17\!\cdots\!58}{10\!\cdots\!25}a^{3}-\frac{22\!\cdots\!99}{10\!\cdots\!25}a^{2}-\frac{29\!\cdots\!91}{10\!\cdots\!25}a+\frac{58\!\cdots\!02}{20\!\cdots\!85}$, $\frac{76\!\cdots\!77}{20\!\cdots\!85}a^{23}+\frac{19\!\cdots\!94}{10\!\cdots\!25}a^{22}-\frac{25\!\cdots\!33}{10\!\cdots\!25}a^{21}-\frac{17\!\cdots\!59}{10\!\cdots\!25}a^{20}+\frac{14\!\cdots\!02}{10\!\cdots\!25}a^{19}-\frac{38\!\cdots\!19}{10\!\cdots\!25}a^{18}+\frac{28\!\cdots\!19}{10\!\cdots\!25}a^{17}+\frac{58\!\cdots\!34}{10\!\cdots\!25}a^{16}-\frac{12\!\cdots\!57}{10\!\cdots\!25}a^{15}+\frac{85\!\cdots\!28}{10\!\cdots\!25}a^{14}+\frac{35\!\cdots\!94}{10\!\cdots\!25}a^{13}-\frac{50\!\cdots\!22}{20\!\cdots\!85}a^{12}+\frac{40\!\cdots\!53}{10\!\cdots\!25}a^{11}+\frac{15\!\cdots\!23}{10\!\cdots\!25}a^{10}-\frac{96\!\cdots\!81}{10\!\cdots\!25}a^{9}+\frac{50\!\cdots\!62}{10\!\cdots\!25}a^{8}+\frac{94\!\cdots\!44}{10\!\cdots\!25}a^{7}-\frac{94\!\cdots\!14}{10\!\cdots\!25}a^{6}-\frac{11\!\cdots\!26}{20\!\cdots\!85}a^{5}+\frac{72\!\cdots\!84}{10\!\cdots\!25}a^{4}+\frac{19\!\cdots\!37}{10\!\cdots\!25}a^{3}-\frac{24\!\cdots\!04}{10\!\cdots\!25}a^{2}-\frac{33\!\cdots\!03}{10\!\cdots\!25}a+\frac{34\!\cdots\!93}{10\!\cdots\!25}$, $\frac{22\!\cdots\!16}{10\!\cdots\!25}a^{23}+\frac{11\!\cdots\!71}{10\!\cdots\!25}a^{22}-\frac{15\!\cdots\!22}{10\!\cdots\!25}a^{21}-\frac{10\!\cdots\!27}{10\!\cdots\!25}a^{20}+\frac{85\!\cdots\!13}{10\!\cdots\!25}a^{19}-\frac{90\!\cdots\!06}{40\!\cdots\!37}a^{18}+\frac{16\!\cdots\!93}{10\!\cdots\!25}a^{17}+\frac{34\!\cdots\!07}{10\!\cdots\!25}a^{16}-\frac{75\!\cdots\!24}{10\!\cdots\!25}a^{15}+\frac{50\!\cdots\!77}{10\!\cdots\!25}a^{14}+\frac{21\!\cdots\!54}{10\!\cdots\!25}a^{13}-\frac{15\!\cdots\!07}{10\!\cdots\!25}a^{12}+\frac{24\!\cdots\!96}{10\!\cdots\!25}a^{11}+\frac{86\!\cdots\!77}{10\!\cdots\!25}a^{10}-\frac{56\!\cdots\!69}{10\!\cdots\!25}a^{9}+\frac{29\!\cdots\!76}{10\!\cdots\!25}a^{8}+\frac{10\!\cdots\!16}{20\!\cdots\!85}a^{7}-\frac{55\!\cdots\!74}{10\!\cdots\!25}a^{6}-\frac{31\!\cdots\!56}{10\!\cdots\!25}a^{5}+\frac{42\!\cdots\!51}{10\!\cdots\!25}a^{4}+\frac{96\!\cdots\!38}{10\!\cdots\!25}a^{3}-\frac{13\!\cdots\!12}{10\!\cdots\!25}a^{2}-\frac{26\!\cdots\!23}{20\!\cdots\!85}a+\frac{16\!\cdots\!03}{10\!\cdots\!25}$, $\frac{91\!\cdots\!23}{10\!\cdots\!25}a^{23}-\frac{52\!\cdots\!39}{10\!\cdots\!25}a^{22}+\frac{86\!\cdots\!68}{10\!\cdots\!25}a^{21}+\frac{59\!\cdots\!82}{10\!\cdots\!25}a^{20}-\frac{35\!\cdots\!72}{10\!\cdots\!25}a^{19}+\frac{10\!\cdots\!31}{10\!\cdots\!25}a^{18}-\frac{23\!\cdots\!13}{20\!\cdots\!85}a^{17}-\frac{94\!\cdots\!87}{10\!\cdots\!25}a^{16}+\frac{69\!\cdots\!49}{20\!\cdots\!85}a^{15}-\frac{33\!\cdots\!43}{10\!\cdots\!25}a^{14}+\frac{44\!\cdots\!62}{10\!\cdots\!25}a^{13}+\frac{57\!\cdots\!26}{10\!\cdots\!25}a^{12}-\frac{24\!\cdots\!59}{20\!\cdots\!85}a^{11}+\frac{44\!\cdots\!32}{10\!\cdots\!25}a^{10}+\frac{21\!\cdots\!31}{10\!\cdots\!25}a^{9}-\frac{21\!\cdots\!06}{10\!\cdots\!25}a^{8}-\frac{16\!\cdots\!81}{10\!\cdots\!25}a^{7}+\frac{29\!\cdots\!03}{10\!\cdots\!25}a^{6}+\frac{44\!\cdots\!23}{10\!\cdots\!25}a^{5}-\frac{20\!\cdots\!89}{10\!\cdots\!25}a^{4}+\frac{47\!\cdots\!48}{10\!\cdots\!25}a^{3}+\frac{68\!\cdots\!27}{10\!\cdots\!25}a^{2}-\frac{21\!\cdots\!43}{10\!\cdots\!25}a-\frac{91\!\cdots\!46}{10\!\cdots\!25}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 9344905.652391985 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{10}\cdot 9344905.652391985 \cdot 1}{2\cdot\sqrt{641953627807088196277618408203125}}\cr\approx \mathstrut & 0.282951345118995 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^24 - 6*x^23 + 11*x^22 - x^21 - 42*x^20 + 132*x^19 - 157*x^18 - 93*x^17 + 463*x^16 - 504*x^15 + 89*x^14 + 756*x^13 - 1626*x^12 + 841*x^11 + 2572*x^10 - 3447*x^9 - 1348*x^8 + 4593*x^7 - 688*x^6 - 3121*x^5 + 1191*x^4 + 1049*x^3 - 514*x^2 - 151*x + 83)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^24 - 6*x^23 + 11*x^22 - x^21 - 42*x^20 + 132*x^19 - 157*x^18 - 93*x^17 + 463*x^16 - 504*x^15 + 89*x^14 + 756*x^13 - 1626*x^12 + 841*x^11 + 2572*x^10 - 3447*x^9 - 1348*x^8 + 4593*x^7 - 688*x^6 - 3121*x^5 + 1191*x^4 + 1049*x^3 - 514*x^2 - 151*x + 83, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^24 - 6*x^23 + 11*x^22 - x^21 - 42*x^20 + 132*x^19 - 157*x^18 - 93*x^17 + 463*x^16 - 504*x^15 + 89*x^14 + 756*x^13 - 1626*x^12 + 841*x^11 + 2572*x^10 - 3447*x^9 - 1348*x^8 + 4593*x^7 - 688*x^6 - 3121*x^5 + 1191*x^4 + 1049*x^3 - 514*x^2 - 151*x + 83);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 6*x^23 + 11*x^22 - x^21 - 42*x^20 + 132*x^19 - 157*x^18 - 93*x^17 + 463*x^16 - 504*x^15 + 89*x^14 + 756*x^13 - 1626*x^12 + 841*x^11 + 2572*x^10 - 3447*x^9 - 1348*x^8 + 4593*x^7 - 688*x^6 - 3121*x^5 + 1191*x^4 + 1049*x^3 - 514*x^2 - 151*x + 83);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\GL(2,5)$ (as 24T1353):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 480
The 24 conjugacy class representatives for $\GL(2,5)$
Character table for $\GL(2,5)$

Intermediate fields

6.2.13203125.1, deg 12

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 24 siblings: 24.4.16048840695177204906940460205078125.3, 24.4.16048840695177204906940460205078125.4
Arithmetically equvalently sibling: 24.4.641953627807088196277618408203125.3
Minimal sibling: 24.4.641953627807088196277618408203125.3

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $24$ $24$ R ${\href{/padicField/7.8.0.1}{8} }^{3}$ $20{,}\,{\href{/padicField/11.4.0.1}{4} }$ R ${\href{/padicField/17.8.0.1}{8} }^{3}$ ${\href{/padicField/19.5.0.1}{5} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }^{5}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ $20{,}\,{\href{/padicField/29.4.0.1}{4} }$ ${\href{/padicField/31.12.0.1}{12} }^{2}$ $24$ $20{,}\,{\href{/padicField/41.4.0.1}{4} }$ ${\href{/padicField/43.4.0.1}{4} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{5}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ $24$ ${\href{/padicField/59.6.0.1}{6} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.4.0.1$x^{4} + 4 x^{2} + 4 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $20$$20$$1$$31$
\(13\) Copy content Toggle raw display 13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.0.1$x^{4} + 3 x^{2} + 12 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.8.4.1$x^{8} + 520 x^{7} + 101458 x^{6} + 8810644 x^{5} + 288610205 x^{4} + 142111548 x^{3} + 982314112 x^{2} + 3617879976 x + 920156436$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
13.8.4.1$x^{8} + 520 x^{7} + 101458 x^{6} + 8810644 x^{5} + 288610205 x^{4} + 142111548 x^{3} + 982314112 x^{2} + 3617879976 x + 920156436$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$