Properties

Label 28.0.194...021.1
Degree $28$
Signature $[0, 14]$
Discriminant $1.942\times 10^{41}$
Root discriminant \(29.82\)
Ramified primes $3,7$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $D_{28}$ (as 28T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 + 28*x^24 - 14*x^23 - 35*x^22 - 19*x^21 + 1470*x^20 - 4557*x^19 + 9849*x^18 - 9660*x^17 + 2863*x^16 + 12915*x^15 - 18102*x^14 + 12103*x^13 - 2891*x^12 - 21119*x^11 + 2975*x^10 - 4704*x^9 + 70*x^8 + 13698*x^7 + 6909*x^6 + 4900*x^5 + 5047*x^4 + 1015*x^3 - 7*x^2 - 7*x + 1)
 
gp: K = bnfinit(y^28 + 28*y^24 - 14*y^23 - 35*y^22 - 19*y^21 + 1470*y^20 - 4557*y^19 + 9849*y^18 - 9660*y^17 + 2863*y^16 + 12915*y^15 - 18102*y^14 + 12103*y^13 - 2891*y^12 - 21119*y^11 + 2975*y^10 - 4704*y^9 + 70*y^8 + 13698*y^7 + 6909*y^6 + 4900*y^5 + 5047*y^4 + 1015*y^3 - 7*y^2 - 7*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 + 28*x^24 - 14*x^23 - 35*x^22 - 19*x^21 + 1470*x^20 - 4557*x^19 + 9849*x^18 - 9660*x^17 + 2863*x^16 + 12915*x^15 - 18102*x^14 + 12103*x^13 - 2891*x^12 - 21119*x^11 + 2975*x^10 - 4704*x^9 + 70*x^8 + 13698*x^7 + 6909*x^6 + 4900*x^5 + 5047*x^4 + 1015*x^3 - 7*x^2 - 7*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 + 28*x^24 - 14*x^23 - 35*x^22 - 19*x^21 + 1470*x^20 - 4557*x^19 + 9849*x^18 - 9660*x^17 + 2863*x^16 + 12915*x^15 - 18102*x^14 + 12103*x^13 - 2891*x^12 - 21119*x^11 + 2975*x^10 - 4704*x^9 + 70*x^8 + 13698*x^7 + 6909*x^6 + 4900*x^5 + 5047*x^4 + 1015*x^3 - 7*x^2 - 7*x + 1)
 

\( x^{28} + 28 x^{24} - 14 x^{23} - 35 x^{22} - 19 x^{21} + 1470 x^{20} - 4557 x^{19} + 9849 x^{18} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 14]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(194166288728873478373956441365593381326021\) \(\medspace = 3^{21}\cdot 7^{37}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(29.82\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{3/4}7^{19/14}\approx 31.97125685688869$
Ramified primes:   \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{21}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3}a^{16}+\frac{1}{3}a^{15}+\frac{1}{3}a^{14}-\frac{1}{3}a^{12}+\frac{1}{3}a^{11}-\frac{1}{3}a^{9}+\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{17}-\frac{1}{3}a^{14}-\frac{1}{3}a^{13}-\frac{1}{3}a^{12}-\frac{1}{3}a^{11}-\frac{1}{3}a^{10}-\frac{1}{3}a^{9}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{15}a^{18}+\frac{2}{15}a^{16}-\frac{1}{3}a^{15}+\frac{7}{15}a^{14}+\frac{1}{3}a^{13}+\frac{2}{5}a^{12}-\frac{1}{3}a^{11}+\frac{1}{3}a^{10}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}+\frac{2}{5}a^{6}+\frac{1}{3}a^{5}+\frac{2}{15}a^{4}-\frac{1}{3}a^{3}+\frac{7}{15}a^{2}-\frac{4}{15}$, $\frac{1}{45}a^{19}-\frac{1}{15}a^{17}-\frac{1}{9}a^{16}+\frac{22}{45}a^{15}-\frac{4}{9}a^{14}-\frac{4}{45}a^{13}-\frac{4}{9}a^{11}-\frac{1}{3}a^{10}-\frac{1}{9}a^{8}-\frac{19}{45}a^{7}+\frac{2}{9}a^{6}-\frac{13}{45}a^{5}+\frac{4}{9}a^{4}+\frac{2}{45}a^{3}-\frac{4}{9}a^{2}+\frac{1}{45}a+\frac{4}{9}$, $\frac{1}{45}a^{20}-\frac{1}{9}a^{17}-\frac{2}{45}a^{16}-\frac{4}{9}a^{15}-\frac{13}{45}a^{14}+\frac{1}{3}a^{13}-\frac{17}{45}a^{12}-\frac{1}{3}a^{11}+\frac{1}{3}a^{10}+\frac{2}{9}a^{9}-\frac{19}{45}a^{8}+\frac{2}{9}a^{7}+\frac{1}{9}a^{6}+\frac{4}{9}a^{5}-\frac{7}{45}a^{4}+\frac{2}{9}a^{3}-\frac{8}{45}a^{2}+\frac{1}{9}a+\frac{1}{15}$, $\frac{1}{315}a^{21}+\frac{1}{45}a^{18}+\frac{4}{45}a^{17}+\frac{7}{45}a^{16}-\frac{4}{45}a^{15}-\frac{52}{105}a^{14}-\frac{11}{45}a^{13}-\frac{1}{5}a^{12}+\frac{1}{3}a^{11}-\frac{4}{9}a^{10}-\frac{22}{45}a^{9}-\frac{4}{9}a^{8}+\frac{10}{63}a^{7}-\frac{4}{45}a^{6}+\frac{14}{45}a^{5}+\frac{22}{45}a^{4}+\frac{1}{45}a^{3}+\frac{17}{45}a^{2}+\frac{1}{5}a-\frac{11}{105}$, $\frac{1}{315}a^{22}+\frac{1}{45}a^{18}-\frac{1}{9}a^{17}-\frac{1}{9}a^{16}+\frac{22}{63}a^{15}+\frac{1}{15}a^{14}-\frac{1}{9}a^{13}+\frac{4}{15}a^{12}-\frac{1}{3}a^{11}-\frac{7}{45}a^{10}+\frac{2}{9}a^{9}-\frac{25}{63}a^{8}+\frac{1}{45}a^{6}+\frac{4}{9}a^{5}+\frac{1}{9}a^{4}+\frac{1}{3}a^{3}-\frac{7}{45}a^{2}+\frac{13}{63}a+\frac{7}{45}$, $\frac{1}{2205}a^{23}+\frac{1}{2205}a^{22}+\frac{2}{2205}a^{21}+\frac{1}{45}a^{18}+\frac{1}{315}a^{17}+\frac{19}{2205}a^{16}-\frac{709}{2205}a^{15}-\frac{67}{147}a^{14}-\frac{8}{45}a^{13}-\frac{7}{15}a^{12}+\frac{118}{315}a^{11}+\frac{113}{315}a^{10}-\frac{226}{735}a^{9}+\frac{115}{441}a^{8}+\frac{37}{147}a^{7}+\frac{7}{15}a^{6}-\frac{23}{105}a^{5}-\frac{4}{45}a^{4}-\frac{82}{315}a^{3}-\frac{211}{441}a^{2}-\frac{397}{2205}a-\frac{724}{2205}$, $\frac{1}{2205}a^{24}+\frac{1}{2205}a^{22}-\frac{2}{2205}a^{21}-\frac{2}{105}a^{18}+\frac{53}{735}a^{17}+\frac{4}{35}a^{16}-\frac{71}{245}a^{15}+\frac{41}{735}a^{14}-\frac{1}{5}a^{13}-\frac{31}{63}a^{12}-\frac{5}{21}a^{11}-\frac{734}{2205}a^{10}+\frac{74}{315}a^{9}+\frac{64}{147}a^{8}-\frac{13}{441}a^{7}+\frac{29}{315}a^{6}+\frac{3}{35}a^{5}+\frac{16}{315}a^{4}-\frac{193}{735}a^{3}+\frac{8}{105}a^{2}+\frac{1094}{2205}a+\frac{479}{2205}$, $\frac{1}{2205}a^{25}-\frac{1}{735}a^{22}-\frac{2}{2205}a^{21}+\frac{1}{315}a^{19}-\frac{37}{2205}a^{18}+\frac{2}{45}a^{17}+\frac{13}{105}a^{16}-\frac{59}{441}a^{15}+\frac{5}{441}a^{14}+\frac{83}{315}a^{13}+\frac{17}{105}a^{12}-\frac{67}{441}a^{11}+\frac{22}{105}a^{10}+\frac{43}{105}a^{9}-\frac{59}{147}a^{8}+\frac{922}{2205}a^{7}+\frac{139}{315}a^{6}-\frac{2}{105}a^{5}+\frac{346}{735}a^{4}-\frac{2}{7}a^{3}-\frac{17}{63}a^{2}-\frac{109}{441}a-\frac{72}{245}$, $\frac{1}{46293975}a^{26}+\frac{1063}{6613425}a^{25}-\frac{334}{5143775}a^{24}-\frac{58}{270725}a^{23}+\frac{2164}{3561075}a^{22}+\frac{2152}{6613425}a^{21}+\frac{8963}{1322685}a^{20}-\frac{64717}{46293975}a^{19}-\frac{188861}{6613425}a^{18}+\frac{97513}{712215}a^{17}-\frac{2502677}{46293975}a^{16}+\frac{19216598}{46293975}a^{15}-\frac{1454}{188955}a^{14}-\frac{493231}{2204475}a^{13}+\frac{22378672}{46293975}a^{12}-\frac{365048}{2204475}a^{11}+\frac{7403584}{15431325}a^{10}-\frac{2054524}{5143775}a^{9}+\frac{141486}{1028755}a^{8}+\frac{99646}{734825}a^{7}-\frac{968152}{2204475}a^{6}+\frac{4557776}{9258795}a^{5}-\frac{238}{4275}a^{4}-\frac{2536879}{15431325}a^{3}+\frac{4833194}{46293975}a^{2}+\frac{1869851}{15431325}a-\frac{2853551}{6613425}$, $\frac{1}{56\!\cdots\!25}a^{27}-\frac{35\!\cdots\!02}{33\!\cdots\!25}a^{26}+\frac{48\!\cdots\!59}{56\!\cdots\!25}a^{25}-\frac{10\!\cdots\!98}{56\!\cdots\!25}a^{24}-\frac{28\!\cdots\!68}{56\!\cdots\!25}a^{23}-\frac{83\!\cdots\!22}{18\!\cdots\!75}a^{22}-\frac{51\!\cdots\!07}{11\!\cdots\!65}a^{21}-\frac{14\!\cdots\!52}{56\!\cdots\!25}a^{20}+\frac{16\!\cdots\!86}{18\!\cdots\!75}a^{19}-\frac{33\!\cdots\!32}{11\!\cdots\!65}a^{18}-\frac{78\!\cdots\!52}{56\!\cdots\!25}a^{17}-\frac{54\!\cdots\!97}{56\!\cdots\!25}a^{16}+\frac{29\!\cdots\!42}{11\!\cdots\!65}a^{15}-\frac{18\!\cdots\!38}{22\!\cdots\!25}a^{14}-\frac{20\!\cdots\!71}{18\!\cdots\!75}a^{13}-\frac{17\!\cdots\!28}{56\!\cdots\!25}a^{12}+\frac{13\!\cdots\!22}{13\!\cdots\!25}a^{11}-\frac{83\!\cdots\!82}{18\!\cdots\!75}a^{10}-\frac{45\!\cdots\!76}{71\!\cdots\!35}a^{9}-\frac{11\!\cdots\!87}{56\!\cdots\!25}a^{8}+\frac{15\!\cdots\!48}{13\!\cdots\!25}a^{7}-\frac{36\!\cdots\!81}{13\!\cdots\!89}a^{6}-\frac{44\!\cdots\!27}{56\!\cdots\!25}a^{5}+\frac{11\!\cdots\!43}{56\!\cdots\!25}a^{4}-\frac{28\!\cdots\!22}{18\!\cdots\!75}a^{3}-\frac{73\!\cdots\!12}{56\!\cdots\!25}a^{2}+\frac{94\!\cdots\!18}{56\!\cdots\!25}a+\frac{30\!\cdots\!18}{12\!\cdots\!85}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $5$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{2483015689689046132493535544}{135590657338272663144140439575} a^{27} + \frac{2550543468967063270793151703}{135590657338272663144140439575} a^{26} - \frac{399125827023381464749367464}{135590657338272663144140439575} a^{25} + \frac{5339565635006596601382103}{4785552611939035169793191985} a^{24} - \frac{69618072586628078637744406409}{135590657338272663144140439575} a^{23} + \frac{106253445256546974600845969303}{135590657338272663144140439575} a^{22} + \frac{119850001201105857689343127274}{406771972014817989432421318725} a^{21} - \frac{1894113248788320169802516891}{7975921019898391949655319975} a^{20} - \frac{3689312465566995731063620029961}{135590657338272663144140439575} a^{19} + \frac{15070188960599642672111541589406}{135590657338272663144140439575} a^{18} - \frac{36667504056741658515065598846192}{135590657338272663144140439575} a^{17} + \frac{51149522515922769936197617155879}{135590657338272663144140439575} a^{16} - \frac{36506418125527823753562191525819}{135590657338272663144140439575} a^{15} - \frac{4321473322594020558373154494}{31034712139682458948075175} a^{14} + \frac{14781353780222136425805463800152}{27118131467654532628828087915} a^{13} - \frac{236578907182029997695256974094232}{406771972014817989432421318725} a^{12} + \frac{1100707315458103496336303720491}{3307089203372503979125376575} a^{11} + \frac{38185084449299036945595814437488}{135590657338272663144140439575} a^{10} - \frac{73537725712684747062956184953}{174057326493289683111861925} a^{9} + \frac{25372018618811115752087887460923}{135590657338272663144140439575} a^{8} - \frac{356887161289165830050959144831}{3307089203372503979125376575} a^{7} - \frac{31218436408085924827447862317339}{135590657338272663144140439575} a^{6} + \frac{16821201697778245653747351112203}{135590657338272663144140439575} a^{5} + \frac{607109558819869352566853417219}{135590657338272663144140439575} a^{4} - \frac{764906593331357705290854969772}{81354394402963597886484263745} a^{3} + \frac{452436643392682952353581058149}{7136350386224877007586338925} a^{2} + \frac{1098898729747356602719239949854}{135590657338272663144140439575} a - \frac{3881275378066986026342599727}{406771972014817989432421318725} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{27\!\cdots\!76}{18\!\cdots\!75}a^{27}-\frac{36\!\cdots\!04}{18\!\cdots\!75}a^{26}+\frac{62\!\cdots\!63}{14\!\cdots\!75}a^{25}-\frac{60\!\cdots\!58}{18\!\cdots\!75}a^{24}+\frac{25\!\cdots\!34}{63\!\cdots\!25}a^{23}-\frac{16\!\cdots\!52}{63\!\cdots\!25}a^{22}-\frac{49\!\cdots\!43}{10\!\cdots\!53}a^{21}-\frac{39\!\cdots\!27}{18\!\cdots\!75}a^{20}+\frac{39\!\cdots\!23}{18\!\cdots\!75}a^{19}-\frac{85\!\cdots\!14}{12\!\cdots\!85}a^{18}+\frac{28\!\cdots\!03}{18\!\cdots\!75}a^{17}-\frac{10\!\cdots\!04}{63\!\cdots\!25}a^{16}+\frac{37\!\cdots\!29}{58\!\cdots\!67}a^{15}+\frac{26\!\cdots\!28}{15\!\cdots\!75}a^{14}-\frac{17\!\cdots\!01}{63\!\cdots\!25}a^{13}+\frac{13\!\cdots\!39}{63\!\cdots\!25}a^{12}-\frac{11\!\cdots\!36}{15\!\cdots\!25}a^{11}-\frac{32\!\cdots\!83}{11\!\cdots\!75}a^{10}+\frac{75\!\cdots\!33}{92\!\cdots\!55}a^{9}-\frac{15\!\cdots\!12}{18\!\cdots\!75}a^{8}+\frac{45\!\cdots\!86}{34\!\cdots\!75}a^{7}+\frac{14\!\cdots\!98}{75\!\cdots\!71}a^{6}+\frac{13\!\cdots\!03}{18\!\cdots\!75}a^{5}+\frac{11\!\cdots\!78}{18\!\cdots\!75}a^{4}+\frac{12\!\cdots\!74}{18\!\cdots\!75}a^{3}+\frac{40\!\cdots\!01}{63\!\cdots\!25}a^{2}-\frac{19\!\cdots\!07}{18\!\cdots\!75}a+\frac{24\!\cdots\!13}{18\!\cdots\!55}$, $\frac{30\!\cdots\!62}{18\!\cdots\!75}a^{27}-\frac{15\!\cdots\!17}{14\!\cdots\!75}a^{26}+\frac{46\!\cdots\!07}{37\!\cdots\!55}a^{25}-\frac{16\!\cdots\!68}{18\!\cdots\!75}a^{24}+\frac{85\!\cdots\!83}{18\!\cdots\!75}a^{23}-\frac{48\!\cdots\!23}{90\!\cdots\!75}a^{22}-\frac{10\!\cdots\!42}{18\!\cdots\!75}a^{21}-\frac{50\!\cdots\!73}{14\!\cdots\!75}a^{20}+\frac{14\!\cdots\!84}{63\!\cdots\!25}a^{19}-\frac{98\!\cdots\!27}{11\!\cdots\!75}a^{18}+\frac{14\!\cdots\!77}{63\!\cdots\!25}a^{17}-\frac{20\!\cdots\!41}{63\!\cdots\!25}a^{16}+\frac{87\!\cdots\!13}{27\!\cdots\!25}a^{15}-\frac{18\!\cdots\!87}{24\!\cdots\!25}a^{14}-\frac{37\!\cdots\!98}{18\!\cdots\!75}a^{13}+\frac{67\!\cdots\!33}{18\!\cdots\!75}a^{12}-\frac{12\!\cdots\!54}{35\!\cdots\!75}a^{11}-\frac{10\!\cdots\!53}{18\!\cdots\!75}a^{10}+\frac{29\!\cdots\!08}{46\!\cdots\!75}a^{9}-\frac{17\!\cdots\!59}{90\!\cdots\!75}a^{8}+\frac{29\!\cdots\!88}{24\!\cdots\!25}a^{7}+\frac{19\!\cdots\!12}{14\!\cdots\!75}a^{6}+\frac{12\!\cdots\!67}{63\!\cdots\!25}a^{5}+\frac{22\!\cdots\!82}{18\!\cdots\!75}a^{4}+\frac{57\!\cdots\!09}{18\!\cdots\!75}a^{3}+\frac{53\!\cdots\!59}{18\!\cdots\!75}a^{2}-\frac{64\!\cdots\!59}{27\!\cdots\!25}a-\frac{23\!\cdots\!64}{18\!\cdots\!75}$, $\frac{82\!\cdots\!28}{18\!\cdots\!75}a^{27}-\frac{11\!\cdots\!84}{18\!\cdots\!75}a^{26}-\frac{57\!\cdots\!47}{11\!\cdots\!65}a^{25}+\frac{16\!\cdots\!01}{14\!\cdots\!75}a^{24}+\frac{13\!\cdots\!59}{11\!\cdots\!25}a^{23}-\frac{25\!\cdots\!81}{11\!\cdots\!75}a^{22}-\frac{16\!\cdots\!33}{18\!\cdots\!75}a^{21}+\frac{93\!\cdots\!32}{56\!\cdots\!25}a^{20}+\frac{36\!\cdots\!59}{56\!\cdots\!25}a^{19}-\frac{53\!\cdots\!01}{18\!\cdots\!75}a^{18}+\frac{39\!\cdots\!52}{56\!\cdots\!25}a^{17}-\frac{25\!\cdots\!46}{27\!\cdots\!25}a^{16}+\frac{36\!\cdots\!43}{63\!\cdots\!25}a^{15}+\frac{71\!\cdots\!07}{11\!\cdots\!75}a^{14}-\frac{10\!\cdots\!61}{56\!\cdots\!25}a^{13}+\frac{61\!\cdots\!48}{33\!\cdots\!25}a^{12}-\frac{12\!\cdots\!54}{13\!\cdots\!25}a^{11}-\frac{50\!\cdots\!96}{56\!\cdots\!25}a^{10}+\frac{32\!\cdots\!93}{19\!\cdots\!75}a^{9}-\frac{10\!\cdots\!41}{18\!\cdots\!75}a^{8}+\frac{45\!\cdots\!61}{15\!\cdots\!25}a^{7}+\frac{18\!\cdots\!83}{29\!\cdots\!75}a^{6}-\frac{34\!\cdots\!33}{56\!\cdots\!25}a^{5}-\frac{99\!\cdots\!81}{56\!\cdots\!25}a^{4}+\frac{80\!\cdots\!63}{56\!\cdots\!25}a^{3}-\frac{21\!\cdots\!66}{81\!\cdots\!75}a^{2}-\frac{19\!\cdots\!61}{56\!\cdots\!25}a+\frac{23\!\cdots\!72}{56\!\cdots\!25}$, $\frac{85\!\cdots\!87}{38\!\cdots\!75}a^{27}-\frac{23\!\cdots\!76}{99\!\cdots\!25}a^{26}+\frac{36\!\cdots\!06}{11\!\cdots\!65}a^{25}-\frac{61\!\cdots\!69}{63\!\cdots\!25}a^{24}+\frac{35\!\cdots\!71}{56\!\cdots\!25}a^{23}-\frac{18\!\cdots\!87}{18\!\cdots\!75}a^{22}-\frac{67\!\cdots\!33}{18\!\cdots\!75}a^{21}+\frac{26\!\cdots\!81}{81\!\cdots\!75}a^{20}+\frac{18\!\cdots\!74}{56\!\cdots\!25}a^{19}-\frac{85\!\cdots\!92}{63\!\cdots\!25}a^{18}+\frac{18\!\cdots\!37}{56\!\cdots\!25}a^{17}-\frac{45\!\cdots\!13}{99\!\cdots\!25}a^{16}+\frac{61\!\cdots\!34}{18\!\cdots\!75}a^{15}+\frac{38\!\cdots\!38}{22\!\cdots\!25}a^{14}-\frac{54\!\cdots\!98}{81\!\cdots\!75}a^{13}+\frac{40\!\cdots\!61}{56\!\cdots\!25}a^{12}-\frac{56\!\cdots\!24}{13\!\cdots\!25}a^{11}-\frac{19\!\cdots\!26}{56\!\cdots\!25}a^{10}+\frac{43\!\cdots\!53}{81\!\cdots\!25}a^{9}-\frac{25\!\cdots\!13}{11\!\cdots\!75}a^{8}+\frac{61\!\cdots\!13}{46\!\cdots\!75}a^{7}+\frac{22\!\cdots\!36}{81\!\cdots\!75}a^{6}-\frac{92\!\cdots\!23}{56\!\cdots\!25}a^{5}-\frac{64\!\cdots\!56}{56\!\cdots\!25}a^{4}+\frac{46\!\cdots\!21}{43\!\cdots\!25}a^{3}-\frac{27\!\cdots\!66}{33\!\cdots\!25}a^{2}-\frac{59\!\cdots\!51}{56\!\cdots\!25}a+\frac{74\!\cdots\!52}{56\!\cdots\!25}$, $\frac{26\!\cdots\!94}{25\!\cdots\!57}a^{27}-\frac{17\!\cdots\!34}{81\!\cdots\!75}a^{26}+\frac{10\!\cdots\!42}{56\!\cdots\!25}a^{25}+\frac{74\!\cdots\!56}{18\!\cdots\!75}a^{24}+\frac{16\!\cdots\!09}{56\!\cdots\!25}a^{23}-\frac{39\!\cdots\!12}{18\!\cdots\!75}a^{22}-\frac{62\!\cdots\!74}{18\!\cdots\!75}a^{21}-\frac{27\!\cdots\!37}{22\!\cdots\!13}a^{20}+\frac{13\!\cdots\!47}{90\!\cdots\!75}a^{19}-\frac{28\!\cdots\!84}{56\!\cdots\!25}a^{18}+\frac{25\!\cdots\!80}{22\!\cdots\!13}a^{17}-\frac{69\!\cdots\!69}{56\!\cdots\!25}a^{16}+\frac{99\!\cdots\!42}{18\!\cdots\!75}a^{15}+\frac{62\!\cdots\!59}{49\!\cdots\!05}a^{14}-\frac{12\!\cdots\!67}{56\!\cdots\!25}a^{13}+\frac{13\!\cdots\!37}{81\!\cdots\!75}a^{12}-\frac{27\!\cdots\!77}{46\!\cdots\!75}a^{11}-\frac{92\!\cdots\!17}{43\!\cdots\!25}a^{10}+\frac{10\!\cdots\!23}{13\!\cdots\!25}a^{9}-\frac{22\!\cdots\!53}{37\!\cdots\!55}a^{8}+\frac{16\!\cdots\!51}{13\!\cdots\!25}a^{7}+\frac{89\!\cdots\!54}{63\!\cdots\!25}a^{6}+\frac{67\!\cdots\!27}{16\!\cdots\!95}a^{5}+\frac{22\!\cdots\!31}{56\!\cdots\!25}a^{4}+\frac{14\!\cdots\!93}{33\!\cdots\!25}a^{3}+\frac{14\!\cdots\!98}{56\!\cdots\!25}a^{2}-\frac{66\!\cdots\!69}{56\!\cdots\!25}a+\frac{19\!\cdots\!46}{56\!\cdots\!25}$, $\frac{67\!\cdots\!49}{56\!\cdots\!25}a^{27}-\frac{10\!\cdots\!43}{56\!\cdots\!25}a^{26}-\frac{26\!\cdots\!67}{18\!\cdots\!75}a^{25}+\frac{19\!\cdots\!23}{75\!\cdots\!71}a^{24}+\frac{18\!\cdots\!44}{56\!\cdots\!25}a^{23}-\frac{41\!\cdots\!01}{18\!\cdots\!75}a^{22}-\frac{22\!\cdots\!48}{56\!\cdots\!25}a^{21}-\frac{86\!\cdots\!33}{56\!\cdots\!25}a^{20}+\frac{99\!\cdots\!36}{56\!\cdots\!25}a^{19}-\frac{32\!\cdots\!46}{56\!\cdots\!25}a^{18}+\frac{23\!\cdots\!19}{18\!\cdots\!75}a^{17}-\frac{44\!\cdots\!72}{33\!\cdots\!25}a^{16}+\frac{95\!\cdots\!28}{18\!\cdots\!75}a^{15}+\frac{11\!\cdots\!76}{73\!\cdots\!75}a^{14}-\frac{93\!\cdots\!09}{37\!\cdots\!55}a^{13}+\frac{35\!\cdots\!63}{18\!\cdots\!75}a^{12}-\frac{28\!\cdots\!52}{46\!\cdots\!75}a^{11}-\frac{14\!\cdots\!38}{56\!\cdots\!25}a^{10}+\frac{11\!\cdots\!42}{13\!\cdots\!25}a^{9}-\frac{38\!\cdots\!28}{56\!\cdots\!25}a^{8}+\frac{17\!\cdots\!09}{15\!\cdots\!25}a^{7}+\frac{30\!\cdots\!83}{18\!\cdots\!75}a^{6}+\frac{30\!\cdots\!87}{56\!\cdots\!25}a^{5}+\frac{26\!\cdots\!11}{56\!\cdots\!25}a^{4}+\frac{45\!\cdots\!17}{87\!\cdots\!05}a^{3}+\frac{14\!\cdots\!94}{56\!\cdots\!25}a^{2}-\frac{35\!\cdots\!14}{56\!\cdots\!25}a-\frac{69\!\cdots\!31}{56\!\cdots\!25}$, $\frac{76\!\cdots\!72}{56\!\cdots\!25}a^{27}-\frac{51\!\cdots\!68}{22\!\cdots\!13}a^{26}+\frac{12\!\cdots\!91}{56\!\cdots\!25}a^{25}+\frac{11\!\cdots\!06}{56\!\cdots\!25}a^{24}+\frac{20\!\cdots\!48}{54\!\cdots\!65}a^{23}-\frac{14\!\cdots\!51}{56\!\cdots\!25}a^{22}-\frac{24\!\cdots\!83}{56\!\cdots\!25}a^{21}-\frac{97\!\cdots\!89}{56\!\cdots\!25}a^{20}+\frac{22\!\cdots\!41}{11\!\cdots\!65}a^{19}-\frac{36\!\cdots\!26}{56\!\cdots\!25}a^{18}+\frac{27\!\cdots\!92}{18\!\cdots\!75}a^{17}-\frac{35\!\cdots\!42}{23\!\cdots\!85}a^{16}+\frac{38\!\cdots\!41}{63\!\cdots\!25}a^{15}+\frac{37\!\cdots\!14}{22\!\cdots\!25}a^{14}-\frac{15\!\cdots\!19}{56\!\cdots\!25}a^{13}+\frac{23\!\cdots\!71}{11\!\cdots\!65}a^{12}-\frac{66\!\cdots\!96}{92\!\cdots\!55}a^{11}-\frac{15\!\cdots\!26}{56\!\cdots\!25}a^{10}+\frac{10\!\cdots\!83}{11\!\cdots\!75}a^{9}-\frac{26\!\cdots\!92}{33\!\cdots\!25}a^{8}+\frac{29\!\cdots\!67}{23\!\cdots\!45}a^{7}+\frac{34\!\cdots\!58}{18\!\cdots\!75}a^{6}+\frac{38\!\cdots\!59}{63\!\cdots\!25}a^{5}+\frac{20\!\cdots\!01}{37\!\cdots\!55}a^{4}+\frac{33\!\cdots\!42}{56\!\cdots\!25}a^{3}+\frac{17\!\cdots\!02}{47\!\cdots\!75}a^{2}-\frac{76\!\cdots\!39}{11\!\cdots\!65}a-\frac{14\!\cdots\!01}{56\!\cdots\!25}$, $\frac{21\!\cdots\!74}{12\!\cdots\!15}a^{27}-\frac{16\!\cdots\!18}{37\!\cdots\!55}a^{26}+\frac{12\!\cdots\!09}{11\!\cdots\!65}a^{25}-\frac{55\!\cdots\!14}{11\!\cdots\!65}a^{24}+\frac{14\!\cdots\!42}{28\!\cdots\!35}a^{23}-\frac{42\!\cdots\!91}{11\!\cdots\!65}a^{22}-\frac{46\!\cdots\!21}{87\!\cdots\!05}a^{21}-\frac{35\!\cdots\!21}{16\!\cdots\!95}a^{20}+\frac{59\!\cdots\!03}{22\!\cdots\!13}a^{19}-\frac{99\!\cdots\!24}{11\!\cdots\!65}a^{18}+\frac{22\!\cdots\!44}{11\!\cdots\!65}a^{17}-\frac{10\!\cdots\!04}{46\!\cdots\!37}a^{16}+\frac{24\!\cdots\!37}{22\!\cdots\!13}a^{15}+\frac{88\!\cdots\!68}{44\!\cdots\!45}a^{14}-\frac{66\!\cdots\!76}{18\!\cdots\!55}a^{13}+\frac{34\!\cdots\!38}{11\!\cdots\!65}a^{12}-\frac{34\!\cdots\!02}{27\!\cdots\!65}a^{11}-\frac{43\!\cdots\!09}{12\!\cdots\!85}a^{10}+\frac{52\!\cdots\!86}{39\!\cdots\!95}a^{9}-\frac{97\!\cdots\!54}{87\!\cdots\!05}a^{8}+\frac{17\!\cdots\!80}{61\!\cdots\!77}a^{7}+\frac{12\!\cdots\!41}{54\!\cdots\!65}a^{6}+\frac{45\!\cdots\!62}{66\!\cdots\!45}a^{5}+\frac{15\!\cdots\!99}{22\!\cdots\!13}a^{4}+\frac{27\!\cdots\!92}{37\!\cdots\!55}a^{3}+\frac{24\!\cdots\!79}{32\!\cdots\!59}a^{2}-\frac{50\!\cdots\!89}{37\!\cdots\!55}a+\frac{19\!\cdots\!12}{22\!\cdots\!15}$, $\frac{68\!\cdots\!64}{56\!\cdots\!25}a^{27}+\frac{50\!\cdots\!38}{29\!\cdots\!75}a^{26}-\frac{73\!\cdots\!31}{56\!\cdots\!25}a^{25}+\frac{13\!\cdots\!43}{66\!\cdots\!45}a^{24}+\frac{19\!\cdots\!99}{56\!\cdots\!25}a^{23}-\frac{69\!\cdots\!08}{56\!\cdots\!25}a^{22}-\frac{25\!\cdots\!18}{56\!\cdots\!25}a^{21}-\frac{95\!\cdots\!29}{33\!\cdots\!25}a^{20}+\frac{10\!\cdots\!41}{56\!\cdots\!25}a^{19}-\frac{29\!\cdots\!46}{56\!\cdots\!25}a^{18}+\frac{63\!\cdots\!37}{56\!\cdots\!25}a^{17}-\frac{22\!\cdots\!22}{23\!\cdots\!75}a^{16}+\frac{95\!\cdots\!14}{56\!\cdots\!25}a^{15}+\frac{70\!\cdots\!88}{43\!\cdots\!75}a^{14}-\frac{19\!\cdots\!98}{97\!\cdots\!45}a^{13}+\frac{49\!\cdots\!23}{43\!\cdots\!25}a^{12}-\frac{14\!\cdots\!51}{13\!\cdots\!25}a^{11}-\frac{16\!\cdots\!52}{63\!\cdots\!25}a^{10}+\frac{20\!\cdots\!47}{13\!\cdots\!25}a^{9}-\frac{27\!\cdots\!38}{56\!\cdots\!25}a^{8}-\frac{42\!\cdots\!63}{46\!\cdots\!75}a^{7}+\frac{31\!\cdots\!08}{18\!\cdots\!75}a^{6}+\frac{60\!\cdots\!67}{56\!\cdots\!25}a^{5}+\frac{39\!\cdots\!76}{56\!\cdots\!25}a^{4}+\frac{26\!\cdots\!23}{37\!\cdots\!55}a^{3}+\frac{11\!\cdots\!74}{56\!\cdots\!25}a^{2}+\frac{73\!\cdots\!94}{63\!\cdots\!25}a-\frac{20\!\cdots\!42}{18\!\cdots\!75}$, $\frac{41\!\cdots\!14}{56\!\cdots\!25}a^{27}-\frac{21\!\cdots\!47}{11\!\cdots\!65}a^{26}+\frac{34\!\cdots\!41}{81\!\cdots\!75}a^{25}-\frac{63\!\cdots\!99}{81\!\cdots\!75}a^{24}+\frac{77\!\cdots\!01}{37\!\cdots\!55}a^{23}-\frac{17\!\cdots\!37}{11\!\cdots\!75}a^{22}-\frac{95\!\cdots\!12}{43\!\cdots\!25}a^{21}-\frac{15\!\cdots\!21}{18\!\cdots\!75}a^{20}+\frac{81\!\cdots\!62}{75\!\cdots\!71}a^{19}-\frac{97\!\cdots\!87}{27\!\cdots\!25}a^{18}+\frac{10\!\cdots\!17}{12\!\cdots\!25}a^{17}-\frac{34\!\cdots\!58}{37\!\cdots\!55}a^{16}+\frac{24\!\cdots\!58}{56\!\cdots\!25}a^{15}+\frac{18\!\cdots\!08}{22\!\cdots\!25}a^{14}-\frac{88\!\cdots\!98}{56\!\cdots\!25}a^{13}+\frac{85\!\cdots\!26}{66\!\cdots\!45}a^{12}-\frac{21\!\cdots\!57}{39\!\cdots\!95}a^{11}-\frac{11\!\cdots\!16}{81\!\cdots\!75}a^{10}+\frac{91\!\cdots\!96}{15\!\cdots\!25}a^{9}-\frac{21\!\cdots\!76}{43\!\cdots\!25}a^{8}+\frac{34\!\cdots\!76}{27\!\cdots\!65}a^{7}+\frac{55\!\cdots\!73}{56\!\cdots\!25}a^{6}+\frac{14\!\cdots\!32}{56\!\cdots\!25}a^{5}+\frac{46\!\cdots\!34}{16\!\cdots\!95}a^{4}+\frac{59\!\cdots\!88}{20\!\cdots\!25}a^{3}-\frac{32\!\cdots\!56}{63\!\cdots\!25}a^{2}-\frac{20\!\cdots\!44}{12\!\cdots\!85}a+\frac{12\!\cdots\!53}{56\!\cdots\!25}$, $\frac{14\!\cdots\!88}{56\!\cdots\!25}a^{27}-\frac{92\!\cdots\!76}{18\!\cdots\!75}a^{26}+\frac{17\!\cdots\!97}{18\!\cdots\!75}a^{25}-\frac{14\!\cdots\!57}{69\!\cdots\!75}a^{24}+\frac{39\!\cdots\!94}{56\!\cdots\!25}a^{23}-\frac{55\!\cdots\!84}{11\!\cdots\!65}a^{22}-\frac{44\!\cdots\!24}{56\!\cdots\!25}a^{21}-\frac{61\!\cdots\!87}{18\!\cdots\!75}a^{20}+\frac{69\!\cdots\!27}{18\!\cdots\!75}a^{19}-\frac{13\!\cdots\!58}{11\!\cdots\!75}a^{18}+\frac{10\!\cdots\!27}{38\!\cdots\!75}a^{17}-\frac{55\!\cdots\!38}{18\!\cdots\!75}a^{16}+\frac{73\!\cdots\!37}{56\!\cdots\!25}a^{15}+\frac{11\!\cdots\!33}{38\!\cdots\!25}a^{14}-\frac{96\!\cdots\!26}{18\!\cdots\!75}a^{13}+\frac{22\!\cdots\!84}{56\!\cdots\!25}a^{12}-\frac{20\!\cdots\!91}{13\!\cdots\!25}a^{11}-\frac{81\!\cdots\!43}{16\!\cdots\!95}a^{10}+\frac{23\!\cdots\!11}{13\!\cdots\!25}a^{9}-\frac{85\!\cdots\!81}{56\!\cdots\!25}a^{8}+\frac{42\!\cdots\!81}{13\!\cdots\!25}a^{7}+\frac{33\!\cdots\!66}{99\!\cdots\!25}a^{6}+\frac{61\!\cdots\!59}{56\!\cdots\!25}a^{5}+\frac{57\!\cdots\!06}{56\!\cdots\!25}a^{4}+\frac{86\!\cdots\!12}{81\!\cdots\!75}a^{3}+\frac{47\!\cdots\!36}{11\!\cdots\!65}a^{2}-\frac{86\!\cdots\!69}{56\!\cdots\!25}a+\frac{89\!\cdots\!22}{56\!\cdots\!25}$, $\frac{14\!\cdots\!18}{11\!\cdots\!65}a^{27}-\frac{19\!\cdots\!31}{33\!\cdots\!25}a^{26}+\frac{22\!\cdots\!78}{56\!\cdots\!25}a^{25}-\frac{52\!\cdots\!88}{56\!\cdots\!25}a^{24}+\frac{66\!\cdots\!27}{18\!\cdots\!75}a^{23}-\frac{15\!\cdots\!37}{81\!\cdots\!75}a^{22}-\frac{18\!\cdots\!56}{43\!\cdots\!25}a^{21}-\frac{28\!\cdots\!93}{12\!\cdots\!85}a^{20}+\frac{35\!\cdots\!08}{18\!\cdots\!75}a^{19}-\frac{11\!\cdots\!82}{18\!\cdots\!75}a^{18}+\frac{48\!\cdots\!29}{37\!\cdots\!55}a^{17}-\frac{24\!\cdots\!22}{18\!\cdots\!75}a^{16}+\frac{18\!\cdots\!03}{42\!\cdots\!25}a^{15}+\frac{70\!\cdots\!57}{44\!\cdots\!45}a^{14}-\frac{13\!\cdots\!18}{56\!\cdots\!25}a^{13}+\frac{30\!\cdots\!97}{18\!\cdots\!75}a^{12}-\frac{61\!\cdots\!29}{13\!\cdots\!25}a^{11}-\frac{16\!\cdots\!86}{63\!\cdots\!25}a^{10}+\frac{66\!\cdots\!02}{13\!\cdots\!25}a^{9}-\frac{75\!\cdots\!03}{12\!\cdots\!15}a^{8}+\frac{20\!\cdots\!03}{46\!\cdots\!75}a^{7}+\frac{57\!\cdots\!02}{33\!\cdots\!25}a^{6}+\frac{90\!\cdots\!78}{11\!\cdots\!65}a^{5}+\frac{32\!\cdots\!84}{56\!\cdots\!25}a^{4}+\frac{34\!\cdots\!54}{56\!\cdots\!25}a^{3}+\frac{18\!\cdots\!24}{18\!\cdots\!75}a^{2}-\frac{74\!\cdots\!73}{81\!\cdots\!75}a-\frac{14\!\cdots\!76}{56\!\cdots\!25}$, $\frac{35\!\cdots\!04}{56\!\cdots\!25}a^{27}-\frac{36\!\cdots\!22}{18\!\cdots\!75}a^{26}+\frac{43\!\cdots\!58}{99\!\cdots\!25}a^{25}-\frac{62\!\cdots\!97}{56\!\cdots\!25}a^{24}+\frac{99\!\cdots\!43}{56\!\cdots\!25}a^{23}-\frac{80\!\cdots\!14}{56\!\cdots\!25}a^{22}-\frac{52\!\cdots\!01}{29\!\cdots\!35}a^{21}-\frac{34\!\cdots\!93}{56\!\cdots\!25}a^{20}+\frac{52\!\cdots\!07}{56\!\cdots\!25}a^{19}-\frac{11\!\cdots\!58}{37\!\cdots\!55}a^{18}+\frac{40\!\cdots\!42}{56\!\cdots\!25}a^{17}-\frac{27\!\cdots\!09}{33\!\cdots\!25}a^{16}+\frac{52\!\cdots\!68}{12\!\cdots\!85}a^{15}+\frac{51\!\cdots\!86}{73\!\cdots\!75}a^{14}-\frac{77\!\cdots\!37}{56\!\cdots\!25}a^{13}+\frac{66\!\cdots\!28}{56\!\cdots\!25}a^{12}-\frac{70\!\cdots\!47}{13\!\cdots\!25}a^{11}-\frac{67\!\cdots\!34}{56\!\cdots\!25}a^{10}+\frac{15\!\cdots\!23}{27\!\cdots\!65}a^{9}-\frac{19\!\cdots\!91}{43\!\cdots\!25}a^{8}+\frac{17\!\cdots\!42}{13\!\cdots\!25}a^{7}+\frac{94\!\cdots\!39}{11\!\cdots\!65}a^{6}+\frac{94\!\cdots\!17}{56\!\cdots\!25}a^{5}+\frac{22\!\cdots\!51}{99\!\cdots\!25}a^{4}+\frac{13\!\cdots\!31}{56\!\cdots\!25}a^{3}-\frac{98\!\cdots\!48}{56\!\cdots\!25}a^{2}-\frac{96\!\cdots\!83}{56\!\cdots\!25}a+\frac{85\!\cdots\!82}{11\!\cdots\!65}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 13724323267.71925 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{14}\cdot 13724323267.71925 \cdot 1}{6\cdot\sqrt{194166288728873478373956441365593381326021}}\cr\approx \mathstrut & 0.775837792097827 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 + 28*x^24 - 14*x^23 - 35*x^22 - 19*x^21 + 1470*x^20 - 4557*x^19 + 9849*x^18 - 9660*x^17 + 2863*x^16 + 12915*x^15 - 18102*x^14 + 12103*x^13 - 2891*x^12 - 21119*x^11 + 2975*x^10 - 4704*x^9 + 70*x^8 + 13698*x^7 + 6909*x^6 + 4900*x^5 + 5047*x^4 + 1015*x^3 - 7*x^2 - 7*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 + 28*x^24 - 14*x^23 - 35*x^22 - 19*x^21 + 1470*x^20 - 4557*x^19 + 9849*x^18 - 9660*x^17 + 2863*x^16 + 12915*x^15 - 18102*x^14 + 12103*x^13 - 2891*x^12 - 21119*x^11 + 2975*x^10 - 4704*x^9 + 70*x^8 + 13698*x^7 + 6909*x^6 + 4900*x^5 + 5047*x^4 + 1015*x^3 - 7*x^2 - 7*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 + 28*x^24 - 14*x^23 - 35*x^22 - 19*x^21 + 1470*x^20 - 4557*x^19 + 9849*x^18 - 9660*x^17 + 2863*x^16 + 12915*x^15 - 18102*x^14 + 12103*x^13 - 2891*x^12 - 21119*x^11 + 2975*x^10 - 4704*x^9 + 70*x^8 + 13698*x^7 + 6909*x^6 + 4900*x^5 + 5047*x^4 + 1015*x^3 - 7*x^2 - 7*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 + 28*x^24 - 14*x^23 - 35*x^22 - 19*x^21 + 1470*x^20 - 4557*x^19 + 9849*x^18 - 9660*x^17 + 2863*x^16 + 12915*x^15 - 18102*x^14 + 12103*x^13 - 2891*x^12 - 21119*x^11 + 2975*x^10 - 4704*x^9 + 70*x^8 + 13698*x^7 + 6909*x^6 + 4900*x^5 + 5047*x^4 + 1015*x^3 - 7*x^2 - 7*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{28}$ (as 28T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 56
The 17 conjugacy class representatives for $D_{28}$
Character table for $D_{28}$

Intermediate fields

\(\Q(\sqrt{-3}) \), 4.0.189.1, 7.1.40353607.1, 14.0.3561340538630151963.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 28 sibling: deg 28
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $28$ R ${\href{/padicField/5.2.0.1}{2} }^{14}$ R $28$ ${\href{/padicField/13.2.0.1}{2} }^{13}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.2.0.1}{2} }^{14}$ ${\href{/padicField/19.2.0.1}{2} }^{13}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ $28$ $28$ ${\href{/padicField/31.2.0.1}{2} }^{13}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.14.0.1}{14} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{14}$ ${\href{/padicField/43.14.0.1}{14} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{14}$ $28$ ${\href{/padicField/59.2.0.1}{2} }^{14}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.4.3.1$x^{4} + 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
3.8.6.2$x^{8} + 6 x^{5} + 6 x^{4} + 18 x^{2} + 18 x + 9$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
3.8.6.2$x^{8} + 6 x^{5} + 6 x^{4} + 18 x^{2} + 18 x + 9$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
3.8.6.2$x^{8} + 6 x^{5} + 6 x^{4} + 18 x^{2} + 18 x + 9$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
\(7\) Copy content Toggle raw display 7.14.18.23$x^{14} + 42 x^{13} + 777 x^{12} + 8372 x^{11} + 58807 x^{10} + 289170 x^{9} + 1074619 x^{8} + 3344382 x^{7} + 9376654 x^{6} + 22416786 x^{5} + 39663806 x^{4} + 45629668 x^{3} + 31016412 x^{2} + 11931696 x + 2670097$$7$$2$$18$$D_{14}$$[3/2]_{2}^{2}$
7.14.19.4$x^{14} + 21 x^{7} + 42 x^{6} + 21$$14$$1$$19$$D_{14}$$[3/2]_{2}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.3.2t1.a.a$1$ $ 3 $ \(\Q(\sqrt{-3}) \) $C_2$ (as 2T1) $1$ $-1$
1.7.2t1.a.a$1$ $ 7 $ \(\Q(\sqrt{-7}) \) $C_2$ (as 2T1) $1$ $-1$
1.21.2t1.a.a$1$ $ 3 \cdot 7 $ \(\Q(\sqrt{21}) \) $C_2$ (as 2T1) $1$ $1$
* 2.63.4t3.a.a$2$ $ 3^{2} \cdot 7 $ 4.0.189.1 $D_{4}$ (as 4T3) $1$ $0$
* 2.343.7t2.a.c$2$ $ 7^{3}$ 7.1.40353607.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.3087.14t3.a.b$2$ $ 3^{2} \cdot 7^{3}$ 14.0.3561340538630151963.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.343.7t2.a.a$2$ $ 7^{3}$ 7.1.40353607.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.3087.14t3.a.a$2$ $ 3^{2} \cdot 7^{3}$ 14.0.3561340538630151963.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.343.7t2.a.b$2$ $ 7^{3}$ 7.1.40353607.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.3087.14t3.a.c$2$ $ 3^{2} \cdot 7^{3}$ 14.0.3561340538630151963.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.3087.28t10.a.a$2$ $ 3^{2} \cdot 7^{3}$ 28.0.194166288728873478373956441365593381326021.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.3087.28t10.a.f$2$ $ 3^{2} \cdot 7^{3}$ 28.0.194166288728873478373956441365593381326021.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.3087.28t10.a.c$2$ $ 3^{2} \cdot 7^{3}$ 28.0.194166288728873478373956441365593381326021.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.3087.28t10.a.e$2$ $ 3^{2} \cdot 7^{3}$ 28.0.194166288728873478373956441365593381326021.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.3087.28t10.a.d$2$ $ 3^{2} \cdot 7^{3}$ 28.0.194166288728873478373956441365593381326021.1 $D_{28}$ (as 28T10) $1$ $0$
* 2.3087.28t10.a.b$2$ $ 3^{2} \cdot 7^{3}$ 28.0.194166288728873478373956441365593381326021.1 $D_{28}$ (as 28T10) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.