Properties

Label 28.4.267...376.3
Degree $28$
Signature $[4, 12]$
Discriminant $2.679\times 10^{45}$
Root discriminant \(41.92\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $G(2,2)$ (as 28T393)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 2*x^27 + 18*x^25 - 81*x^24 + 48*x^23 - 216*x^22 - 72*x^21 + 2442*x^20 - 2196*x^19 + 7596*x^18 - 13428*x^17 - 10836*x^16 + 38124*x^15 - 74064*x^14 + 115644*x^13 + 34410*x^12 - 394320*x^11 + 529860*x^10 - 198024*x^9 - 305028*x^8 + 686424*x^7 - 854844*x^6 + 761592*x^5 - 483174*x^4 + 215244*x^3 - 64248*x^2 + 11452*x - 926)
 
gp: K = bnfinit(y^28 - 2*y^27 + 18*y^25 - 81*y^24 + 48*y^23 - 216*y^22 - 72*y^21 + 2442*y^20 - 2196*y^19 + 7596*y^18 - 13428*y^17 - 10836*y^16 + 38124*y^15 - 74064*y^14 + 115644*y^13 + 34410*y^12 - 394320*y^11 + 529860*y^10 - 198024*y^9 - 305028*y^8 + 686424*y^7 - 854844*y^6 + 761592*y^5 - 483174*y^4 + 215244*y^3 - 64248*y^2 + 11452*y - 926, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 2*x^27 + 18*x^25 - 81*x^24 + 48*x^23 - 216*x^22 - 72*x^21 + 2442*x^20 - 2196*x^19 + 7596*x^18 - 13428*x^17 - 10836*x^16 + 38124*x^15 - 74064*x^14 + 115644*x^13 + 34410*x^12 - 394320*x^11 + 529860*x^10 - 198024*x^9 - 305028*x^8 + 686424*x^7 - 854844*x^6 + 761592*x^5 - 483174*x^4 + 215244*x^3 - 64248*x^2 + 11452*x - 926);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 2*x^27 + 18*x^25 - 81*x^24 + 48*x^23 - 216*x^22 - 72*x^21 + 2442*x^20 - 2196*x^19 + 7596*x^18 - 13428*x^17 - 10836*x^16 + 38124*x^15 - 74064*x^14 + 115644*x^13 + 34410*x^12 - 394320*x^11 + 529860*x^10 - 198024*x^9 - 305028*x^8 + 686424*x^7 - 854844*x^6 + 761592*x^5 - 483174*x^4 + 215244*x^3 - 64248*x^2 + 11452*x - 926)
 

\( x^{28} - 2 x^{27} + 18 x^{25} - 81 x^{24} + 48 x^{23} - 216 x^{22} - 72 x^{21} + 2442 x^{20} + \cdots - 926 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2678658682623660056187071999014915161641189376\) \(\medspace = 2^{78}\cdot 3^{46}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(41.92\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{2}a^{26}-\frac{1}{2}a^{24}$, $\frac{1}{35\!\cdots\!74}a^{27}+\frac{25\!\cdots\!37}{11\!\cdots\!58}a^{26}+\frac{38\!\cdots\!73}{11\!\cdots\!58}a^{25}-\frac{48\!\cdots\!75}{11\!\cdots\!58}a^{24}-\frac{22\!\cdots\!37}{59\!\cdots\!29}a^{23}-\frac{11\!\cdots\!63}{59\!\cdots\!29}a^{22}+\frac{20\!\cdots\!83}{59\!\cdots\!29}a^{21}+\frac{17\!\cdots\!59}{59\!\cdots\!29}a^{20}+\frac{28\!\cdots\!05}{59\!\cdots\!29}a^{19}-\frac{21\!\cdots\!51}{59\!\cdots\!29}a^{18}+\frac{28\!\cdots\!98}{59\!\cdots\!29}a^{17}+\frac{60\!\cdots\!23}{59\!\cdots\!29}a^{16}-\frac{10\!\cdots\!59}{59\!\cdots\!29}a^{15}-\frac{20\!\cdots\!93}{59\!\cdots\!29}a^{14}+\frac{28\!\cdots\!33}{59\!\cdots\!29}a^{13}+\frac{17\!\cdots\!05}{59\!\cdots\!29}a^{12}+\frac{12\!\cdots\!11}{59\!\cdots\!29}a^{11}-\frac{60\!\cdots\!39}{59\!\cdots\!29}a^{10}+\frac{12\!\cdots\!43}{59\!\cdots\!29}a^{9}+\frac{26\!\cdots\!25}{59\!\cdots\!29}a^{8}+\frac{86\!\cdots\!60}{59\!\cdots\!29}a^{7}+\frac{12\!\cdots\!71}{59\!\cdots\!29}a^{6}+\frac{45\!\cdots\!03}{59\!\cdots\!29}a^{5}-\frac{36\!\cdots\!88}{59\!\cdots\!29}a^{4}-\frac{22\!\cdots\!68}{59\!\cdots\!29}a^{3}+\frac{17\!\cdots\!65}{59\!\cdots\!29}a^{2}-\frac{89\!\cdots\!55}{59\!\cdots\!29}a+\frac{34\!\cdots\!17}{17\!\cdots\!87}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{10\!\cdots\!95}{35\!\cdots\!74}a^{27}+\frac{55\!\cdots\!69}{11\!\cdots\!58}a^{26}+\frac{22\!\cdots\!73}{11\!\cdots\!58}a^{25}-\frac{61\!\cdots\!33}{11\!\cdots\!58}a^{24}+\frac{12\!\cdots\!63}{59\!\cdots\!29}a^{23}-\frac{31\!\cdots\!06}{59\!\cdots\!29}a^{22}+\frac{36\!\cdots\!06}{59\!\cdots\!29}a^{21}+\frac{27\!\cdots\!57}{59\!\cdots\!29}a^{20}-\frac{41\!\cdots\!39}{59\!\cdots\!29}a^{19}+\frac{21\!\cdots\!50}{59\!\cdots\!29}a^{18}-\frac{12\!\cdots\!19}{59\!\cdots\!29}a^{17}+\frac{18\!\cdots\!29}{59\!\cdots\!29}a^{16}+\frac{26\!\cdots\!17}{59\!\cdots\!29}a^{15}-\frac{55\!\cdots\!76}{59\!\cdots\!29}a^{14}+\frac{10\!\cdots\!58}{59\!\cdots\!29}a^{13}-\frac{15\!\cdots\!15}{59\!\cdots\!29}a^{12}-\frac{12\!\cdots\!67}{59\!\cdots\!29}a^{11}+\frac{63\!\cdots\!01}{59\!\cdots\!29}a^{10}-\frac{66\!\cdots\!67}{59\!\cdots\!29}a^{9}+\frac{76\!\cdots\!27}{59\!\cdots\!29}a^{8}+\frac{55\!\cdots\!38}{59\!\cdots\!29}a^{7}-\frac{96\!\cdots\!06}{59\!\cdots\!29}a^{6}+\frac{10\!\cdots\!49}{59\!\cdots\!29}a^{5}-\frac{87\!\cdots\!38}{59\!\cdots\!29}a^{4}+\frac{48\!\cdots\!89}{59\!\cdots\!29}a^{3}-\frac{17\!\cdots\!12}{59\!\cdots\!29}a^{2}+\frac{39\!\cdots\!00}{59\!\cdots\!29}a-\frac{11\!\cdots\!60}{17\!\cdots\!87}$, $\frac{22\!\cdots\!60}{59\!\cdots\!29}a^{27}+\frac{44\!\cdots\!34}{59\!\cdots\!29}a^{26}-\frac{27\!\cdots\!97}{59\!\cdots\!29}a^{25}-\frac{40\!\cdots\!46}{59\!\cdots\!29}a^{24}+\frac{18\!\cdots\!58}{59\!\cdots\!29}a^{23}-\frac{10\!\cdots\!81}{59\!\cdots\!29}a^{22}+\frac{47\!\cdots\!71}{59\!\cdots\!29}a^{21}+\frac{16\!\cdots\!11}{59\!\cdots\!29}a^{20}-\frac{54\!\cdots\!67}{59\!\cdots\!29}a^{19}+\frac{49\!\cdots\!21}{59\!\cdots\!29}a^{18}-\frac{16\!\cdots\!38}{59\!\cdots\!29}a^{17}+\frac{29\!\cdots\!06}{59\!\cdots\!29}a^{16}+\frac{23\!\cdots\!75}{59\!\cdots\!29}a^{15}-\frac{86\!\cdots\!76}{59\!\cdots\!29}a^{14}+\frac{16\!\cdots\!35}{59\!\cdots\!29}a^{13}-\frac{25\!\cdots\!96}{59\!\cdots\!29}a^{12}-\frac{76\!\cdots\!10}{59\!\cdots\!29}a^{11}+\frac{88\!\cdots\!41}{59\!\cdots\!29}a^{10}-\frac{11\!\cdots\!30}{59\!\cdots\!29}a^{9}+\frac{42\!\cdots\!29}{59\!\cdots\!29}a^{8}+\frac{72\!\cdots\!69}{59\!\cdots\!29}a^{7}-\frac{15\!\cdots\!62}{59\!\cdots\!29}a^{6}+\frac{18\!\cdots\!59}{59\!\cdots\!29}a^{5}-\frac{16\!\cdots\!86}{59\!\cdots\!29}a^{4}+\frac{10\!\cdots\!13}{59\!\cdots\!29}a^{3}-\frac{42\!\cdots\!49}{59\!\cdots\!29}a^{2}+\frac{11\!\cdots\!56}{59\!\cdots\!29}a-\frac{15\!\cdots\!69}{59\!\cdots\!29}$, $\frac{20\!\cdots\!24}{17\!\cdots\!87}a^{27}+\frac{21\!\cdots\!33}{11\!\cdots\!58}a^{26}+\frac{47\!\cdots\!99}{59\!\cdots\!29}a^{25}-\frac{23\!\cdots\!55}{11\!\cdots\!58}a^{24}+\frac{49\!\cdots\!85}{59\!\cdots\!29}a^{23}-\frac{11\!\cdots\!90}{59\!\cdots\!29}a^{22}+\frac{13\!\cdots\!42}{59\!\cdots\!29}a^{21}+\frac{10\!\cdots\!85}{59\!\cdots\!29}a^{20}-\frac{16\!\cdots\!62}{59\!\cdots\!29}a^{19}+\frac{81\!\cdots\!81}{59\!\cdots\!29}a^{18}-\frac{46\!\cdots\!41}{59\!\cdots\!29}a^{17}+\frac{71\!\cdots\!99}{59\!\cdots\!29}a^{16}+\frac{10\!\cdots\!25}{59\!\cdots\!29}a^{15}-\frac{21\!\cdots\!74}{59\!\cdots\!29}a^{14}+\frac{40\!\cdots\!92}{59\!\cdots\!29}a^{13}-\frac{60\!\cdots\!87}{59\!\cdots\!29}a^{12}-\frac{49\!\cdots\!93}{59\!\cdots\!29}a^{11}+\frac{24\!\cdots\!59}{59\!\cdots\!29}a^{10}-\frac{25\!\cdots\!06}{59\!\cdots\!29}a^{9}+\frac{18\!\cdots\!63}{59\!\cdots\!29}a^{8}+\frac{21\!\cdots\!06}{59\!\cdots\!29}a^{7}-\frac{36\!\cdots\!67}{59\!\cdots\!29}a^{6}+\frac{41\!\cdots\!30}{59\!\cdots\!29}a^{5}-\frac{32\!\cdots\!03}{59\!\cdots\!29}a^{4}+\frac{17\!\cdots\!43}{59\!\cdots\!29}a^{3}-\frac{64\!\cdots\!68}{59\!\cdots\!29}a^{2}+\frac{14\!\cdots\!03}{59\!\cdots\!29}a-\frac{45\!\cdots\!28}{17\!\cdots\!87}$, $\frac{31\!\cdots\!31}{59\!\cdots\!29}a^{27}-\frac{97\!\cdots\!25}{11\!\cdots\!58}a^{26}-\frac{21\!\cdots\!48}{59\!\cdots\!29}a^{25}+\frac{11\!\cdots\!03}{11\!\cdots\!58}a^{24}-\frac{23\!\cdots\!46}{59\!\cdots\!29}a^{23}+\frac{45\!\cdots\!74}{59\!\cdots\!29}a^{22}-\frac{67\!\cdots\!75}{59\!\cdots\!29}a^{21}-\frac{55\!\cdots\!78}{59\!\cdots\!29}a^{20}+\frac{74\!\cdots\!99}{59\!\cdots\!29}a^{19}-\frac{35\!\cdots\!37}{59\!\cdots\!29}a^{18}+\frac{22\!\cdots\!00}{59\!\cdots\!29}a^{17}-\frac{31\!\cdots\!47}{59\!\cdots\!29}a^{16}-\frac{48\!\cdots\!30}{59\!\cdots\!29}a^{15}+\frac{98\!\cdots\!60}{59\!\cdots\!29}a^{14}-\frac{19\!\cdots\!68}{59\!\cdots\!29}a^{13}+\frac{27\!\cdots\!53}{59\!\cdots\!29}a^{12}+\frac{23\!\cdots\!96}{59\!\cdots\!29}a^{11}-\frac{11\!\cdots\!94}{59\!\cdots\!29}a^{10}+\frac{11\!\cdots\!52}{59\!\cdots\!29}a^{9}-\frac{93\!\cdots\!06}{59\!\cdots\!29}a^{8}-\frac{10\!\cdots\!80}{59\!\cdots\!29}a^{7}+\frac{17\!\cdots\!33}{59\!\cdots\!29}a^{6}-\frac{19\!\cdots\!10}{59\!\cdots\!29}a^{5}+\frac{15\!\cdots\!67}{59\!\cdots\!29}a^{4}-\frac{82\!\cdots\!88}{59\!\cdots\!29}a^{3}+\frac{29\!\cdots\!55}{59\!\cdots\!29}a^{2}-\frac{61\!\cdots\!28}{59\!\cdots\!29}a+\frac{50\!\cdots\!72}{59\!\cdots\!29}$, $\frac{10\!\cdots\!56}{17\!\cdots\!87}a^{27}+\frac{73\!\cdots\!58}{59\!\cdots\!29}a^{26}-\frac{12\!\cdots\!93}{59\!\cdots\!29}a^{25}-\frac{63\!\cdots\!32}{59\!\cdots\!29}a^{24}+\frac{28\!\cdots\!97}{59\!\cdots\!29}a^{23}-\frac{19\!\cdots\!80}{59\!\cdots\!29}a^{22}+\frac{69\!\cdots\!08}{59\!\cdots\!29}a^{21}+\frac{15\!\cdots\!14}{59\!\cdots\!29}a^{20}-\frac{85\!\cdots\!96}{59\!\cdots\!29}a^{19}+\frac{86\!\cdots\!61}{59\!\cdots\!29}a^{18}-\frac{24\!\cdots\!29}{59\!\cdots\!29}a^{17}+\frac{48\!\cdots\!73}{59\!\cdots\!29}a^{16}+\frac{36\!\cdots\!50}{59\!\cdots\!29}a^{15}-\frac{14\!\cdots\!81}{59\!\cdots\!29}a^{14}+\frac{25\!\cdots\!90}{59\!\cdots\!29}a^{13}-\frac{40\!\cdots\!04}{59\!\cdots\!29}a^{12}-\frac{11\!\cdots\!90}{59\!\cdots\!29}a^{11}+\frac{14\!\cdots\!58}{59\!\cdots\!29}a^{10}-\frac{19\!\cdots\!23}{59\!\cdots\!29}a^{9}+\frac{58\!\cdots\!06}{59\!\cdots\!29}a^{8}+\frac{13\!\cdots\!72}{59\!\cdots\!29}a^{7}-\frac{25\!\cdots\!87}{59\!\cdots\!29}a^{6}+\frac{29\!\cdots\!41}{59\!\cdots\!29}a^{5}-\frac{25\!\cdots\!10}{59\!\cdots\!29}a^{4}+\frac{14\!\cdots\!30}{59\!\cdots\!29}a^{3}-\frac{52\!\cdots\!52}{59\!\cdots\!29}a^{2}+\frac{10\!\cdots\!87}{59\!\cdots\!29}a-\frac{26\!\cdots\!53}{17\!\cdots\!87}$, $\frac{16\!\cdots\!62}{17\!\cdots\!87}a^{27}-\frac{17\!\cdots\!05}{11\!\cdots\!58}a^{26}-\frac{37\!\cdots\!72}{59\!\cdots\!29}a^{25}+\frac{19\!\cdots\!53}{11\!\cdots\!58}a^{24}-\frac{39\!\cdots\!98}{59\!\cdots\!29}a^{23}+\frac{88\!\cdots\!61}{59\!\cdots\!29}a^{22}-\frac{11\!\cdots\!99}{59\!\cdots\!29}a^{21}-\frac{87\!\cdots\!64}{59\!\cdots\!29}a^{20}+\frac{12\!\cdots\!14}{59\!\cdots\!29}a^{19}-\frac{63\!\cdots\!69}{59\!\cdots\!29}a^{18}+\frac{38\!\cdots\!33}{59\!\cdots\!29}a^{17}-\frac{56\!\cdots\!97}{59\!\cdots\!29}a^{16}-\frac{83\!\cdots\!90}{59\!\cdots\!29}a^{15}+\frac{17\!\cdots\!30}{59\!\cdots\!29}a^{14}-\frac{32\!\cdots\!93}{59\!\cdots\!29}a^{13}+\frac{48\!\cdots\!13}{59\!\cdots\!29}a^{12}+\frac{40\!\cdots\!97}{59\!\cdots\!29}a^{11}-\frac{19\!\cdots\!37}{59\!\cdots\!29}a^{10}+\frac{20\!\cdots\!37}{59\!\cdots\!29}a^{9}-\frac{17\!\cdots\!47}{59\!\cdots\!29}a^{8}-\frac{17\!\cdots\!56}{59\!\cdots\!29}a^{7}+\frac{29\!\cdots\!30}{59\!\cdots\!29}a^{6}-\frac{33\!\cdots\!93}{59\!\cdots\!29}a^{5}+\frac{26\!\cdots\!60}{59\!\cdots\!29}a^{4}-\frac{14\!\cdots\!23}{59\!\cdots\!29}a^{3}+\frac{49\!\cdots\!12}{59\!\cdots\!29}a^{2}-\frac{96\!\cdots\!65}{59\!\cdots\!29}a+\frac{22\!\cdots\!88}{17\!\cdots\!87}$, $\frac{93\!\cdots\!49}{59\!\cdots\!29}a^{27}+\frac{33\!\cdots\!19}{11\!\cdots\!58}a^{26}+\frac{44\!\cdots\!61}{59\!\cdots\!29}a^{25}-\frac{33\!\cdots\!39}{11\!\cdots\!58}a^{24}+\frac{72\!\cdots\!14}{59\!\cdots\!29}a^{23}-\frac{28\!\cdots\!88}{59\!\cdots\!29}a^{22}+\frac{18\!\cdots\!32}{59\!\cdots\!29}a^{21}+\frac{10\!\cdots\!67}{59\!\cdots\!29}a^{20}-\frac{22\!\cdots\!67}{59\!\cdots\!29}a^{19}+\frac{16\!\cdots\!69}{59\!\cdots\!29}a^{18}-\frac{64\!\cdots\!54}{59\!\cdots\!29}a^{17}+\frac{11\!\cdots\!03}{59\!\cdots\!29}a^{16}+\frac{12\!\cdots\!41}{59\!\cdots\!29}a^{15}-\frac{34\!\cdots\!25}{59\!\cdots\!29}a^{14}+\frac{60\!\cdots\!99}{59\!\cdots\!29}a^{13}-\frac{92\!\cdots\!62}{59\!\cdots\!29}a^{12}-\frac{55\!\cdots\!69}{59\!\cdots\!29}a^{11}+\frac{36\!\cdots\!90}{59\!\cdots\!29}a^{10}-\frac{41\!\cdots\!66}{59\!\cdots\!29}a^{9}+\frac{57\!\cdots\!37}{59\!\cdots\!29}a^{8}+\frac{33\!\cdots\!98}{59\!\cdots\!29}a^{7}-\frac{57\!\cdots\!47}{59\!\cdots\!29}a^{6}+\frac{64\!\cdots\!78}{59\!\cdots\!29}a^{5}-\frac{52\!\cdots\!68}{59\!\cdots\!29}a^{4}+\frac{27\!\cdots\!33}{59\!\cdots\!29}a^{3}-\frac{97\!\cdots\!87}{59\!\cdots\!29}a^{2}+\frac{19\!\cdots\!18}{59\!\cdots\!29}a-\frac{14\!\cdots\!46}{59\!\cdots\!29}$, $\frac{31\!\cdots\!07}{59\!\cdots\!29}a^{27}-\frac{50\!\cdots\!10}{59\!\cdots\!29}a^{26}-\frac{21\!\cdots\!41}{59\!\cdots\!29}a^{25}+\frac{56\!\cdots\!61}{59\!\cdots\!29}a^{24}-\frac{23\!\cdots\!95}{59\!\cdots\!29}a^{23}+\frac{53\!\cdots\!75}{59\!\cdots\!29}a^{22}-\frac{65\!\cdots\!69}{59\!\cdots\!29}a^{21}-\frac{50\!\cdots\!52}{59\!\cdots\!29}a^{20}+\frac{75\!\cdots\!32}{59\!\cdots\!29}a^{19}-\frac{37\!\cdots\!35}{59\!\cdots\!29}a^{18}+\frac{22\!\cdots\!36}{59\!\cdots\!29}a^{17}-\frac{33\!\cdots\!96}{59\!\cdots\!29}a^{16}-\frac{48\!\cdots\!56}{59\!\cdots\!29}a^{15}+\frac{10\!\cdots\!96}{59\!\cdots\!29}a^{14}-\frac{19\!\cdots\!78}{59\!\cdots\!29}a^{13}+\frac{28\!\cdots\!76}{59\!\cdots\!29}a^{12}+\frac{23\!\cdots\!60}{59\!\cdots\!29}a^{11}-\frac{11\!\cdots\!82}{59\!\cdots\!29}a^{10}+\frac{11\!\cdots\!15}{59\!\cdots\!29}a^{9}-\frac{11\!\cdots\!06}{59\!\cdots\!29}a^{8}-\frac{10\!\cdots\!83}{59\!\cdots\!29}a^{7}+\frac{17\!\cdots\!25}{59\!\cdots\!29}a^{6}-\frac{19\!\cdots\!67}{59\!\cdots\!29}a^{5}+\frac{15\!\cdots\!77}{59\!\cdots\!29}a^{4}-\frac{84\!\cdots\!39}{59\!\cdots\!29}a^{3}+\frac{30\!\cdots\!11}{59\!\cdots\!29}a^{2}-\frac{65\!\cdots\!56}{59\!\cdots\!29}a+\frac{63\!\cdots\!03}{59\!\cdots\!29}$, $\frac{32\!\cdots\!09}{17\!\cdots\!87}a^{27}-\frac{34\!\cdots\!93}{11\!\cdots\!58}a^{26}-\frac{68\!\cdots\!96}{59\!\cdots\!29}a^{25}+\frac{38\!\cdots\!53}{11\!\cdots\!58}a^{24}-\frac{79\!\cdots\!86}{59\!\cdots\!29}a^{23}+\frac{21\!\cdots\!07}{59\!\cdots\!29}a^{22}-\frac{21\!\cdots\!46}{59\!\cdots\!29}a^{21}-\frac{15\!\cdots\!73}{59\!\cdots\!29}a^{20}+\frac{25\!\cdots\!09}{59\!\cdots\!29}a^{19}-\frac{13\!\cdots\!77}{59\!\cdots\!29}a^{18}+\frac{74\!\cdots\!96}{59\!\cdots\!29}a^{17}-\frac{11\!\cdots\!28}{59\!\cdots\!29}a^{16}-\frac{16\!\cdots\!09}{59\!\cdots\!29}a^{15}+\frac{35\!\cdots\!32}{59\!\cdots\!29}a^{14}-\frac{65\!\cdots\!98}{59\!\cdots\!29}a^{13}+\frac{98\!\cdots\!27}{59\!\cdots\!29}a^{12}+\frac{75\!\cdots\!96}{59\!\cdots\!29}a^{11}-\frac{39\!\cdots\!43}{59\!\cdots\!29}a^{10}+\frac{41\!\cdots\!32}{59\!\cdots\!29}a^{9}-\frac{43\!\cdots\!71}{59\!\cdots\!29}a^{8}-\frac{35\!\cdots\!24}{59\!\cdots\!29}a^{7}+\frac{60\!\cdots\!03}{59\!\cdots\!29}a^{6}-\frac{67\!\cdots\!65}{59\!\cdots\!29}a^{5}+\frac{54\!\cdots\!44}{59\!\cdots\!29}a^{4}-\frac{29\!\cdots\!76}{59\!\cdots\!29}a^{3}+\frac{10\!\cdots\!44}{59\!\cdots\!29}a^{2}-\frac{22\!\cdots\!87}{59\!\cdots\!29}a+\frac{54\!\cdots\!90}{17\!\cdots\!87}$, $\frac{22\!\cdots\!95}{59\!\cdots\!29}a^{27}-\frac{69\!\cdots\!81}{11\!\cdots\!58}a^{26}-\frac{14\!\cdots\!89}{59\!\cdots\!29}a^{25}+\frac{79\!\cdots\!57}{11\!\cdots\!58}a^{24}-\frac{16\!\cdots\!42}{59\!\cdots\!29}a^{23}+\frac{35\!\cdots\!04}{59\!\cdots\!29}a^{22}-\frac{47\!\cdots\!00}{59\!\cdots\!29}a^{21}-\frac{37\!\cdots\!96}{59\!\cdots\!29}a^{20}+\frac{53\!\cdots\!19}{59\!\cdots\!29}a^{19}-\frac{25\!\cdots\!48}{59\!\cdots\!29}a^{18}+\frac{16\!\cdots\!08}{59\!\cdots\!29}a^{17}-\frac{23\!\cdots\!45}{59\!\cdots\!29}a^{16}-\frac{34\!\cdots\!52}{59\!\cdots\!29}a^{15}+\frac{69\!\cdots\!70}{59\!\cdots\!29}a^{14}-\frac{13\!\cdots\!80}{59\!\cdots\!29}a^{13}+\frac{20\!\cdots\!52}{59\!\cdots\!29}a^{12}+\frac{16\!\cdots\!90}{59\!\cdots\!29}a^{11}-\frac{80\!\cdots\!29}{59\!\cdots\!29}a^{10}+\frac{83\!\cdots\!92}{59\!\cdots\!29}a^{9}-\frac{98\!\cdots\!66}{59\!\cdots\!29}a^{8}-\frac{71\!\cdots\!38}{59\!\cdots\!29}a^{7}+\frac{12\!\cdots\!39}{59\!\cdots\!29}a^{6}-\frac{13\!\cdots\!07}{59\!\cdots\!29}a^{5}+\frac{11\!\cdots\!19}{59\!\cdots\!29}a^{4}-\frac{61\!\cdots\!54}{59\!\cdots\!29}a^{3}+\frac{22\!\cdots\!32}{59\!\cdots\!29}a^{2}-\frac{49\!\cdots\!76}{59\!\cdots\!29}a+\frac{50\!\cdots\!36}{59\!\cdots\!29}$, $\frac{15\!\cdots\!30}{59\!\cdots\!29}a^{27}-\frac{41\!\cdots\!79}{59\!\cdots\!29}a^{26}+\frac{16\!\cdots\!98}{59\!\cdots\!29}a^{25}+\frac{29\!\cdots\!70}{59\!\cdots\!29}a^{24}-\frac{14\!\cdots\!38}{59\!\cdots\!29}a^{23}+\frac{15\!\cdots\!35}{59\!\cdots\!29}a^{22}-\frac{34\!\cdots\!95}{59\!\cdots\!29}a^{21}+\frac{83\!\cdots\!62}{59\!\cdots\!29}a^{20}+\frac{39\!\cdots\!06}{59\!\cdots\!29}a^{19}-\frac{60\!\cdots\!20}{59\!\cdots\!29}a^{18}+\frac{12\!\cdots\!03}{59\!\cdots\!29}a^{17}-\frac{27\!\cdots\!12}{59\!\cdots\!29}a^{16}-\frac{58\!\cdots\!74}{59\!\cdots\!29}a^{15}+\frac{78\!\cdots\!18}{59\!\cdots\!29}a^{14}-\frac{15\!\cdots\!74}{59\!\cdots\!29}a^{13}+\frac{23\!\cdots\!83}{59\!\cdots\!29}a^{12}-\frac{31\!\cdots\!22}{59\!\cdots\!29}a^{11}-\frac{71\!\cdots\!86}{59\!\cdots\!29}a^{10}+\frac{12\!\cdots\!23}{59\!\cdots\!29}a^{9}-\frac{64\!\cdots\!84}{59\!\cdots\!29}a^{8}-\frac{58\!\cdots\!25}{59\!\cdots\!29}a^{7}+\frac{14\!\cdots\!62}{59\!\cdots\!29}a^{6}-\frac{18\!\cdots\!15}{59\!\cdots\!29}a^{5}+\frac{17\!\cdots\!26}{59\!\cdots\!29}a^{4}-\frac{11\!\cdots\!51}{59\!\cdots\!29}a^{3}+\frac{46\!\cdots\!05}{59\!\cdots\!29}a^{2}-\frac{11\!\cdots\!28}{59\!\cdots\!29}a+\frac{12\!\cdots\!57}{59\!\cdots\!29}$, $\frac{92\!\cdots\!39}{59\!\cdots\!29}a^{27}-\frac{37\!\cdots\!71}{11\!\cdots\!58}a^{26}-\frac{12\!\cdots\!61}{59\!\cdots\!29}a^{25}+\frac{33\!\cdots\!57}{11\!\cdots\!58}a^{24}-\frac{75\!\cdots\!04}{59\!\cdots\!29}a^{23}+\frac{42\!\cdots\!19}{59\!\cdots\!29}a^{22}-\frac{19\!\cdots\!24}{59\!\cdots\!29}a^{21}-\frac{65\!\cdots\!37}{59\!\cdots\!29}a^{20}+\frac{22\!\cdots\!15}{59\!\cdots\!29}a^{19}-\frac{20\!\cdots\!78}{59\!\cdots\!29}a^{18}+\frac{67\!\cdots\!18}{59\!\cdots\!29}a^{17}-\frac{12\!\cdots\!03}{59\!\cdots\!29}a^{16}-\frac{10\!\cdots\!05}{59\!\cdots\!29}a^{15}+\frac{36\!\cdots\!75}{59\!\cdots\!29}a^{14}-\frac{66\!\cdots\!46}{59\!\cdots\!29}a^{13}+\frac{10\!\cdots\!11}{59\!\cdots\!29}a^{12}+\frac{38\!\cdots\!36}{59\!\cdots\!29}a^{11}-\frac{37\!\cdots\!34}{59\!\cdots\!29}a^{10}+\frac{48\!\cdots\!81}{59\!\cdots\!29}a^{9}-\frac{14\!\cdots\!72}{59\!\cdots\!29}a^{8}-\frac{32\!\cdots\!45}{59\!\cdots\!29}a^{7}+\frac{63\!\cdots\!49}{59\!\cdots\!29}a^{6}-\frac{75\!\cdots\!72}{59\!\cdots\!29}a^{5}+\frac{65\!\cdots\!55}{59\!\cdots\!29}a^{4}-\frac{38\!\cdots\!05}{59\!\cdots\!29}a^{3}+\frac{15\!\cdots\!77}{59\!\cdots\!29}a^{2}-\frac{38\!\cdots\!64}{59\!\cdots\!29}a+\frac{42\!\cdots\!70}{59\!\cdots\!29}$, $\frac{46\!\cdots\!23}{59\!\cdots\!29}a^{27}+\frac{78\!\cdots\!79}{59\!\cdots\!29}a^{26}+\frac{24\!\cdots\!95}{59\!\cdots\!29}a^{25}-\frac{83\!\cdots\!87}{59\!\cdots\!29}a^{24}+\frac{35\!\cdots\!69}{59\!\cdots\!29}a^{23}-\frac{11\!\cdots\!08}{59\!\cdots\!29}a^{22}+\frac{98\!\cdots\!45}{59\!\cdots\!29}a^{21}+\frac{65\!\cdots\!80}{59\!\cdots\!29}a^{20}-\frac{11\!\cdots\!05}{59\!\cdots\!29}a^{19}+\frac{66\!\cdots\!00}{59\!\cdots\!29}a^{18}-\frac{33\!\cdots\!23}{59\!\cdots\!29}a^{17}+\frac{52\!\cdots\!02}{59\!\cdots\!29}a^{16}+\frac{66\!\cdots\!80}{59\!\cdots\!29}a^{15}-\frac{15\!\cdots\!46}{59\!\cdots\!29}a^{14}+\frac{29\!\cdots\!69}{59\!\cdots\!29}a^{13}-\frac{44\!\cdots\!02}{59\!\cdots\!29}a^{12}-\frac{29\!\cdots\!17}{59\!\cdots\!29}a^{11}+\frac{17\!\cdots\!86}{59\!\cdots\!29}a^{10}-\frac{19\!\cdots\!16}{59\!\cdots\!29}a^{9}+\frac{34\!\cdots\!53}{59\!\cdots\!29}a^{8}+\frac{15\!\cdots\!82}{59\!\cdots\!29}a^{7}-\frac{27\!\cdots\!04}{59\!\cdots\!29}a^{6}+\frac{31\!\cdots\!09}{59\!\cdots\!29}a^{5}-\frac{26\!\cdots\!13}{59\!\cdots\!29}a^{4}+\frac{14\!\cdots\!45}{59\!\cdots\!29}a^{3}-\frac{57\!\cdots\!54}{59\!\cdots\!29}a^{2}+\frac{13\!\cdots\!52}{59\!\cdots\!29}a-\frac{15\!\cdots\!75}{59\!\cdots\!29}$, $\frac{74\!\cdots\!49}{17\!\cdots\!87}a^{27}-\frac{86\!\cdots\!29}{11\!\cdots\!58}a^{26}-\frac{11\!\cdots\!16}{59\!\cdots\!29}a^{25}+\frac{88\!\cdots\!77}{11\!\cdots\!58}a^{24}-\frac{18\!\cdots\!62}{59\!\cdots\!29}a^{23}+\frac{69\!\cdots\!13}{59\!\cdots\!29}a^{22}-\frac{51\!\cdots\!41}{59\!\cdots\!29}a^{21}-\frac{30\!\cdots\!18}{59\!\cdots\!29}a^{20}+\frac{59\!\cdots\!82}{59\!\cdots\!29}a^{19}-\frac{39\!\cdots\!21}{59\!\cdots\!29}a^{18}+\frac{17\!\cdots\!73}{59\!\cdots\!29}a^{17}-\frac{28\!\cdots\!39}{59\!\cdots\!29}a^{16}-\frac{34\!\cdots\!96}{59\!\cdots\!29}a^{15}+\frac{86\!\cdots\!32}{59\!\cdots\!29}a^{14}-\frac{16\!\cdots\!23}{59\!\cdots\!29}a^{13}+\frac{24\!\cdots\!48}{59\!\cdots\!29}a^{12}+\frac{14\!\cdots\!72}{59\!\cdots\!29}a^{11}-\frac{94\!\cdots\!82}{59\!\cdots\!29}a^{10}+\frac{10\!\cdots\!62}{59\!\cdots\!29}a^{9}-\frac{18\!\cdots\!77}{59\!\cdots\!29}a^{8}-\frac{83\!\cdots\!18}{59\!\cdots\!29}a^{7}+\frac{14\!\cdots\!40}{59\!\cdots\!29}a^{6}-\frac{17\!\cdots\!88}{59\!\cdots\!29}a^{5}+\frac{14\!\cdots\!71}{59\!\cdots\!29}a^{4}-\frac{79\!\cdots\!94}{59\!\cdots\!29}a^{3}+\frac{29\!\cdots\!80}{59\!\cdots\!29}a^{2}-\frac{65\!\cdots\!75}{59\!\cdots\!29}a+\frac{16\!\cdots\!10}{17\!\cdots\!87}$, $\frac{13\!\cdots\!05}{35\!\cdots\!74}a^{27}-\frac{88\!\cdots\!49}{11\!\cdots\!58}a^{26}-\frac{14\!\cdots\!07}{11\!\cdots\!58}a^{25}+\frac{82\!\cdots\!93}{11\!\cdots\!58}a^{24}-\frac{18\!\cdots\!83}{59\!\cdots\!29}a^{23}+\frac{90\!\cdots\!73}{59\!\cdots\!29}a^{22}-\frac{46\!\cdots\!11}{59\!\cdots\!29}a^{21}-\frac{18\!\cdots\!19}{59\!\cdots\!29}a^{20}+\frac{56\!\cdots\!17}{59\!\cdots\!29}a^{19}-\frac{44\!\cdots\!84}{59\!\cdots\!29}a^{18}+\frac{16\!\cdots\!57}{59\!\cdots\!29}a^{17}-\frac{29\!\cdots\!10}{59\!\cdots\!29}a^{16}-\frac{29\!\cdots\!64}{59\!\cdots\!29}a^{15}+\frac{86\!\cdots\!29}{59\!\cdots\!29}a^{14}-\frac{15\!\cdots\!68}{59\!\cdots\!29}a^{13}+\frac{24\!\cdots\!13}{59\!\cdots\!29}a^{12}+\frac{11\!\cdots\!86}{59\!\cdots\!29}a^{11}-\frac{91\!\cdots\!88}{59\!\cdots\!29}a^{10}+\frac{11\!\cdots\!79}{59\!\cdots\!29}a^{9}-\frac{26\!\cdots\!82}{59\!\cdots\!29}a^{8}-\frac{78\!\cdots\!39}{59\!\cdots\!29}a^{7}+\frac{14\!\cdots\!52}{59\!\cdots\!29}a^{6}-\frac{17\!\cdots\!07}{59\!\cdots\!29}a^{5}+\frac{14\!\cdots\!77}{59\!\cdots\!29}a^{4}-\frac{85\!\cdots\!13}{59\!\cdots\!29}a^{3}+\frac{33\!\cdots\!78}{59\!\cdots\!29}a^{2}-\frac{80\!\cdots\!48}{59\!\cdots\!29}a+\frac{27\!\cdots\!32}{17\!\cdots\!87}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4784367711537.669 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{12}\cdot 4784367711537.669 \cdot 1}{2\cdot\sqrt{2678658682623660056187071999014915161641189376}}\cr\approx \mathstrut & 2.79971786552079 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 2*x^27 + 18*x^25 - 81*x^24 + 48*x^23 - 216*x^22 - 72*x^21 + 2442*x^20 - 2196*x^19 + 7596*x^18 - 13428*x^17 - 10836*x^16 + 38124*x^15 - 74064*x^14 + 115644*x^13 + 34410*x^12 - 394320*x^11 + 529860*x^10 - 198024*x^9 - 305028*x^8 + 686424*x^7 - 854844*x^6 + 761592*x^5 - 483174*x^4 + 215244*x^3 - 64248*x^2 + 11452*x - 926)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 2*x^27 + 18*x^25 - 81*x^24 + 48*x^23 - 216*x^22 - 72*x^21 + 2442*x^20 - 2196*x^19 + 7596*x^18 - 13428*x^17 - 10836*x^16 + 38124*x^15 - 74064*x^14 + 115644*x^13 + 34410*x^12 - 394320*x^11 + 529860*x^10 - 198024*x^9 - 305028*x^8 + 686424*x^7 - 854844*x^6 + 761592*x^5 - 483174*x^4 + 215244*x^3 - 64248*x^2 + 11452*x - 926, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 2*x^27 + 18*x^25 - 81*x^24 + 48*x^23 - 216*x^22 - 72*x^21 + 2442*x^20 - 2196*x^19 + 7596*x^18 - 13428*x^17 - 10836*x^16 + 38124*x^15 - 74064*x^14 + 115644*x^13 + 34410*x^12 - 394320*x^11 + 529860*x^10 - 198024*x^9 - 305028*x^8 + 686424*x^7 - 854844*x^6 + 761592*x^5 - 483174*x^4 + 215244*x^3 - 64248*x^2 + 11452*x - 926);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 2*x^27 + 18*x^25 - 81*x^24 + 48*x^23 - 216*x^22 - 72*x^21 + 2442*x^20 - 2196*x^19 + 7596*x^18 - 13428*x^17 - 10836*x^16 + 38124*x^15 - 74064*x^14 + 115644*x^13 + 34410*x^12 - 394320*x^11 + 529860*x^10 - 198024*x^9 - 305028*x^8 + 686424*x^7 - 854844*x^6 + 761592*x^5 - 483174*x^4 + 215244*x^3 - 64248*x^2 + 11452*x - 926);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$G(2,2)$ (as 28T393):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 12096
The 16 conjugacy class representatives for $G(2,2)$
Character table for $G(2,2)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.7.0.1}{7} }^{4}$ ${\href{/padicField/7.12.0.1}{12} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.12.0.1}{12} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.8.0.1}{8} }^{3}{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.12.0.1}{12} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.12.0.1}{12} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.12.0.1}{12} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.3.0.1}{3} }^{9}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.12.0.1}{12} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.6.0.1}{6} }^{4}{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.8.0.1}{8} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ ${\href{/padicField/47.6.0.1}{6} }^{4}{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.7.0.1}{7} }^{4}$ ${\href{/padicField/59.6.0.1}{6} }^{4}{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.4.5$x^{4} + 2 x + 2$$4$$1$$4$$S_4$$[4/3, 4/3]_{3}^{2}$
Deg $24$$24$$1$$74$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
Deg $27$$27$$1$$46$