Properties

Label 45.15.226...891.1
Degree $45$
Signature $[15, 15]$
Discriminant $-2.266\times 10^{85}$
Root discriminant \(78.85\)
Ramified primes $11,31$
Class number not computed
Class group not computed
Galois group $S_3\times C_{15}$ (as 45T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^45 - 3*x^44 + 19*x^43 - 46*x^42 + 57*x^41 - 164*x^40 - 1542*x^39 + 2752*x^38 - 13177*x^37 + 27636*x^36 - 5513*x^35 + 194674*x^34 - 95004*x^33 + 1568504*x^32 - 4411428*x^31 + 7701411*x^30 - 22788169*x^29 + 356245*x^28 + 13001022*x^27 - 120681074*x^26 + 379138834*x^25 - 251876102*x^24 + 576442931*x^23 + 394617661*x^22 - 1914308187*x^21 + 1873927920*x^20 - 5326366508*x^19 + 1371219529*x^18 + 2001539759*x^17 - 9889048234*x^16 + 22330230077*x^15 - 9918095549*x^14 + 1934927850*x^13 + 41001461054*x^12 - 37979697765*x^11 + 8169529015*x^10 + 13175783912*x^9 - 55418628407*x^8 + 2188320806*x^7 - 1793697518*x^6 - 21729183123*x^5 - 927541692*x^4 + 301468299*x^3 + 1484196634*x^2 + 59977427*x - 879691)
 
gp: K = bnfinit(y^45 - 3*y^44 + 19*y^43 - 46*y^42 + 57*y^41 - 164*y^40 - 1542*y^39 + 2752*y^38 - 13177*y^37 + 27636*y^36 - 5513*y^35 + 194674*y^34 - 95004*y^33 + 1568504*y^32 - 4411428*y^31 + 7701411*y^30 - 22788169*y^29 + 356245*y^28 + 13001022*y^27 - 120681074*y^26 + 379138834*y^25 - 251876102*y^24 + 576442931*y^23 + 394617661*y^22 - 1914308187*y^21 + 1873927920*y^20 - 5326366508*y^19 + 1371219529*y^18 + 2001539759*y^17 - 9889048234*y^16 + 22330230077*y^15 - 9918095549*y^14 + 1934927850*y^13 + 41001461054*y^12 - 37979697765*y^11 + 8169529015*y^10 + 13175783912*y^9 - 55418628407*y^8 + 2188320806*y^7 - 1793697518*y^6 - 21729183123*y^5 - 927541692*y^4 + 301468299*y^3 + 1484196634*y^2 + 59977427*y - 879691, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^45 - 3*x^44 + 19*x^43 - 46*x^42 + 57*x^41 - 164*x^40 - 1542*x^39 + 2752*x^38 - 13177*x^37 + 27636*x^36 - 5513*x^35 + 194674*x^34 - 95004*x^33 + 1568504*x^32 - 4411428*x^31 + 7701411*x^30 - 22788169*x^29 + 356245*x^28 + 13001022*x^27 - 120681074*x^26 + 379138834*x^25 - 251876102*x^24 + 576442931*x^23 + 394617661*x^22 - 1914308187*x^21 + 1873927920*x^20 - 5326366508*x^19 + 1371219529*x^18 + 2001539759*x^17 - 9889048234*x^16 + 22330230077*x^15 - 9918095549*x^14 + 1934927850*x^13 + 41001461054*x^12 - 37979697765*x^11 + 8169529015*x^10 + 13175783912*x^9 - 55418628407*x^8 + 2188320806*x^7 - 1793697518*x^6 - 21729183123*x^5 - 927541692*x^4 + 301468299*x^3 + 1484196634*x^2 + 59977427*x - 879691);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - 3*x^44 + 19*x^43 - 46*x^42 + 57*x^41 - 164*x^40 - 1542*x^39 + 2752*x^38 - 13177*x^37 + 27636*x^36 - 5513*x^35 + 194674*x^34 - 95004*x^33 + 1568504*x^32 - 4411428*x^31 + 7701411*x^30 - 22788169*x^29 + 356245*x^28 + 13001022*x^27 - 120681074*x^26 + 379138834*x^25 - 251876102*x^24 + 576442931*x^23 + 394617661*x^22 - 1914308187*x^21 + 1873927920*x^20 - 5326366508*x^19 + 1371219529*x^18 + 2001539759*x^17 - 9889048234*x^16 + 22330230077*x^15 - 9918095549*x^14 + 1934927850*x^13 + 41001461054*x^12 - 37979697765*x^11 + 8169529015*x^10 + 13175783912*x^9 - 55418628407*x^8 + 2188320806*x^7 - 1793697518*x^6 - 21729183123*x^5 - 927541692*x^4 + 301468299*x^3 + 1484196634*x^2 + 59977427*x - 879691)
 

\( x^{45} - 3 x^{44} + 19 x^{43} - 46 x^{42} + 57 x^{41} - 164 x^{40} - 1542 x^{39} + 2752 x^{38} + \cdots - 879691 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $45$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[15, 15]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-226\!\cdots\!891\) \(\medspace = -\,11^{39}\cdot 31^{30}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(78.85\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{9/10}31^{2/3}\approx 85.40721213930478$
Ramified primes:   \(11\), \(31\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-11}) \)
$\card{ \Aut(K/\Q) }$:  $15$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{2}a^{20}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{21}-\frac{1}{2}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{22}-\frac{1}{2}a^{19}-\frac{1}{2}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{23}-\frac{1}{2}a^{19}-\frac{1}{2}a^{18}-\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{24}-\frac{1}{2}a^{19}-\frac{1}{2}a^{15}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{25}-\frac{1}{2}a^{17}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{26}-\frac{1}{2}a^{18}-\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{27}-\frac{1}{2}a^{19}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{28}-\frac{1}{2}a^{18}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{29}-\frac{1}{2}a^{19}-\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{30}-\frac{1}{2}a^{15}-\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{31}-\frac{1}{2}a^{16}-\frac{1}{2}a^{14}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{32}-\frac{1}{2}a^{17}-\frac{1}{2}a^{15}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{33}-\frac{1}{2}a^{18}-\frac{1}{2}a^{16}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{34}-\frac{1}{2}a^{19}-\frac{1}{2}a^{17}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{35}-\frac{1}{4}a^{34}-\frac{1}{4}a^{33}-\frac{1}{4}a^{30}-\frac{1}{4}a^{28}-\frac{1}{4}a^{27}-\frac{1}{4}a^{25}-\frac{1}{4}a^{24}+\frac{1}{4}a^{19}-\frac{1}{4}a^{18}-\frac{1}{2}a^{17}-\frac{1}{4}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}+\frac{1}{4}a^{12}-\frac{1}{2}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{36}-\frac{1}{4}a^{33}-\frac{1}{4}a^{31}-\frac{1}{4}a^{30}-\frac{1}{4}a^{29}-\frac{1}{4}a^{27}-\frac{1}{4}a^{26}-\frac{1}{4}a^{24}-\frac{1}{4}a^{20}-\frac{1}{2}a^{19}-\frac{1}{4}a^{18}-\frac{1}{4}a^{17}-\frac{1}{4}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{4}a^{13}+\frac{1}{4}a^{12}+\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}+\frac{1}{4}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}$, $\frac{1}{4}a^{37}-\frac{1}{4}a^{34}-\frac{1}{4}a^{32}-\frac{1}{4}a^{31}-\frac{1}{4}a^{30}-\frac{1}{4}a^{28}-\frac{1}{4}a^{27}-\frac{1}{4}a^{25}-\frac{1}{4}a^{21}-\frac{1}{4}a^{19}-\frac{1}{4}a^{18}+\frac{1}{4}a^{17}+\frac{1}{4}a^{14}+\frac{1}{4}a^{13}-\frac{1}{4}a^{11}+\frac{1}{4}a^{10}-\frac{1}{4}a^{9}+\frac{1}{4}a^{8}-\frac{1}{2}a^{6}+\frac{1}{4}a^{4}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{4}a^{38}-\frac{1}{4}a^{34}-\frac{1}{4}a^{32}-\frac{1}{4}a^{31}-\frac{1}{4}a^{30}-\frac{1}{4}a^{29}-\frac{1}{4}a^{27}-\frac{1}{4}a^{26}-\frac{1}{4}a^{25}-\frac{1}{4}a^{24}-\frac{1}{4}a^{22}-\frac{1}{4}a^{20}-\frac{1}{2}a^{17}+\frac{1}{4}a^{16}+\frac{1}{4}a^{15}+\frac{1}{4}a^{14}-\frac{1}{2}a^{13}+\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{2}a^{8}+\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{39}-\frac{1}{4}a^{34}-\frac{1}{4}a^{32}-\frac{1}{4}a^{31}-\frac{1}{4}a^{26}-\frac{1}{4}a^{24}-\frac{1}{4}a^{23}-\frac{1}{4}a^{21}-\frac{1}{4}a^{19}+\frac{1}{4}a^{18}-\frac{1}{4}a^{17}-\frac{1}{4}a^{15}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}+\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}+\frac{1}{4}a^{7}+\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{8}a^{40}-\frac{1}{8}a^{39}-\frac{1}{8}a^{36}-\frac{1}{4}a^{34}-\frac{1}{8}a^{33}-\frac{1}{4}a^{31}-\frac{1}{8}a^{29}-\frac{1}{8}a^{28}+\frac{1}{8}a^{27}-\frac{1}{4}a^{25}+\frac{1}{8}a^{23}-\frac{1}{8}a^{22}+\frac{1}{8}a^{21}-\frac{1}{8}a^{19}-\frac{3}{8}a^{16}+\frac{3}{8}a^{15}-\frac{1}{2}a^{14}+\frac{3}{8}a^{13}+\frac{3}{8}a^{12}-\frac{1}{8}a^{11}-\frac{1}{4}a^{10}+\frac{3}{8}a^{8}+\frac{1}{4}a^{7}+\frac{1}{8}a^{6}+\frac{1}{4}a^{4}-\frac{1}{8}a^{3}-\frac{1}{8}a^{2}-\frac{1}{8}$, $\frac{1}{8}a^{41}-\frac{1}{8}a^{39}-\frac{1}{8}a^{37}-\frac{1}{8}a^{36}-\frac{1}{8}a^{34}+\frac{1}{8}a^{33}-\frac{1}{4}a^{32}-\frac{1}{4}a^{31}+\frac{1}{8}a^{30}-\frac{1}{4}a^{29}-\frac{1}{4}a^{28}-\frac{1}{8}a^{27}-\frac{1}{4}a^{26}-\frac{1}{8}a^{24}+\frac{1}{8}a^{21}-\frac{1}{8}a^{20}-\frac{3}{8}a^{19}+\frac{1}{4}a^{18}+\frac{1}{8}a^{17}+\frac{1}{4}a^{16}+\frac{3}{8}a^{15}-\frac{1}{8}a^{14}-\frac{1}{4}a^{13}-\frac{1}{2}a^{12}-\frac{3}{8}a^{11}+\frac{1}{4}a^{10}-\frac{3}{8}a^{9}-\frac{3}{8}a^{8}+\frac{1}{8}a^{7}+\frac{1}{8}a^{6}+\frac{1}{4}a^{5}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}-\frac{3}{8}a^{2}+\frac{1}{8}a+\frac{1}{8}$, $\frac{1}{8}a^{42}-\frac{1}{8}a^{39}-\frac{1}{8}a^{38}-\frac{1}{8}a^{37}-\frac{1}{8}a^{36}-\frac{1}{8}a^{35}-\frac{1}{8}a^{34}+\frac{1}{8}a^{33}-\frac{1}{4}a^{32}-\frac{1}{8}a^{31}-\frac{1}{4}a^{30}+\frac{1}{8}a^{29}-\frac{1}{4}a^{28}-\frac{1}{8}a^{27}+\frac{1}{8}a^{25}+\frac{1}{8}a^{23}+\frac{1}{8}a^{20}-\frac{3}{8}a^{19}-\frac{3}{8}a^{18}+\frac{1}{4}a^{17}-\frac{1}{2}a^{16}-\frac{1}{4}a^{15}+\frac{1}{4}a^{14}-\frac{1}{8}a^{13}+\frac{1}{8}a^{11}-\frac{1}{8}a^{10}+\frac{1}{8}a^{9}-\frac{1}{8}a^{7}-\frac{1}{8}a^{6}+\frac{1}{8}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+\frac{1}{8}a-\frac{1}{8}$, $\frac{1}{186122296}a^{43}-\frac{6654831}{186122296}a^{42}+\frac{5684313}{186122296}a^{41}+\frac{88913}{1707544}a^{40}-\frac{9426497}{186122296}a^{39}-\frac{5774539}{46530574}a^{38}+\frac{925407}{186122296}a^{37}-\frac{5404423}{186122296}a^{36}-\frac{4013629}{93061148}a^{35}+\frac{11807627}{186122296}a^{34}+\frac{5221049}{23265287}a^{33}+\frac{19734491}{186122296}a^{32}-\frac{42928191}{186122296}a^{31}-\frac{435165}{93061148}a^{30}-\frac{18181521}{186122296}a^{29}-\frac{5171173}{186122296}a^{28}-\frac{21488739}{93061148}a^{27}+\frac{22879279}{186122296}a^{26}+\frac{11049193}{186122296}a^{25}-\frac{6971839}{46530574}a^{24}-\frac{11537301}{186122296}a^{23}+\frac{294089}{23265287}a^{22}-\frac{12102657}{93061148}a^{21}-\frac{22119807}{186122296}a^{20}+\frac{39882295}{186122296}a^{19}+\frac{19236941}{186122296}a^{18}+\frac{48522703}{186122296}a^{17}+\frac{30129091}{93061148}a^{16}+\frac{85284079}{186122296}a^{15}-\frac{8530033}{23265287}a^{14}-\frac{13508281}{186122296}a^{13}+\frac{52321073}{186122296}a^{12}-\frac{88561933}{186122296}a^{11}+\frac{16732021}{46530574}a^{10}-\frac{14564221}{93061148}a^{9}+\frac{32454935}{93061148}a^{8}+\frac{79833067}{186122296}a^{7}-\frac{17572705}{186122296}a^{6}-\frac{86016259}{186122296}a^{5}+\frac{28929859}{186122296}a^{4}+\frac{44837001}{93061148}a^{3}+\frac{478233}{46530574}a^{2}-\frac{38138335}{186122296}a+\frac{6217359}{93061148}$, $\frac{1}{16\!\cdots\!72}a^{44}-\frac{18\!\cdots\!09}{16\!\cdots\!72}a^{43}+\frac{46\!\cdots\!01}{40\!\cdots\!18}a^{42}+\frac{74\!\cdots\!57}{20\!\cdots\!59}a^{41}-\frac{38\!\cdots\!35}{80\!\cdots\!36}a^{40}-\frac{11\!\cdots\!65}{16\!\cdots\!72}a^{39}+\frac{75\!\cdots\!41}{80\!\cdots\!36}a^{38}-\frac{17\!\cdots\!81}{16\!\cdots\!72}a^{37}-\frac{38\!\cdots\!01}{16\!\cdots\!72}a^{36}-\frac{18\!\cdots\!53}{20\!\cdots\!59}a^{35}-\frac{14\!\cdots\!95}{80\!\cdots\!36}a^{34}-\frac{27\!\cdots\!49}{40\!\cdots\!18}a^{33}+\frac{19\!\cdots\!33}{16\!\cdots\!72}a^{32}-\frac{24\!\cdots\!41}{16\!\cdots\!72}a^{31}+\frac{26\!\cdots\!65}{40\!\cdots\!18}a^{30}+\frac{28\!\cdots\!41}{16\!\cdots\!72}a^{29}+\frac{39\!\cdots\!91}{16\!\cdots\!72}a^{28}-\frac{13\!\cdots\!99}{20\!\cdots\!59}a^{27}-\frac{17\!\cdots\!65}{16\!\cdots\!72}a^{26}-\frac{22\!\cdots\!23}{16\!\cdots\!72}a^{25}-\frac{60\!\cdots\!87}{80\!\cdots\!36}a^{24}-\frac{45\!\cdots\!05}{20\!\cdots\!59}a^{23}+\frac{13\!\cdots\!41}{16\!\cdots\!72}a^{22}-\frac{41\!\cdots\!51}{16\!\cdots\!72}a^{21}+\frac{12\!\cdots\!11}{16\!\cdots\!72}a^{20}+\frac{12\!\cdots\!31}{40\!\cdots\!18}a^{19}+\frac{25\!\cdots\!27}{80\!\cdots\!36}a^{18}-\frac{75\!\cdots\!53}{16\!\cdots\!72}a^{17}-\frac{19\!\cdots\!41}{80\!\cdots\!36}a^{16}+\frac{14\!\cdots\!41}{80\!\cdots\!36}a^{15}-\frac{15\!\cdots\!95}{80\!\cdots\!36}a^{14}-\frac{40\!\cdots\!13}{16\!\cdots\!72}a^{13}-\frac{99\!\cdots\!09}{40\!\cdots\!18}a^{12}-\frac{12\!\cdots\!23}{16\!\cdots\!72}a^{11}+\frac{61\!\cdots\!61}{16\!\cdots\!72}a^{10}+\frac{52\!\cdots\!63}{30\!\cdots\!72}a^{9}+\frac{49\!\cdots\!07}{16\!\cdots\!72}a^{8}+\frac{74\!\cdots\!43}{16\!\cdots\!72}a^{7}+\frac{11\!\cdots\!03}{40\!\cdots\!18}a^{6}+\frac{45\!\cdots\!37}{20\!\cdots\!59}a^{5}+\frac{47\!\cdots\!89}{16\!\cdots\!72}a^{4}-\frac{55\!\cdots\!49}{16\!\cdots\!72}a^{3}-\frac{50\!\cdots\!25}{16\!\cdots\!72}a^{2}-\frac{11\!\cdots\!25}{80\!\cdots\!36}a+\frac{72\!\cdots\!63}{16\!\cdots\!72}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $29$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^45 - 3*x^44 + 19*x^43 - 46*x^42 + 57*x^41 - 164*x^40 - 1542*x^39 + 2752*x^38 - 13177*x^37 + 27636*x^36 - 5513*x^35 + 194674*x^34 - 95004*x^33 + 1568504*x^32 - 4411428*x^31 + 7701411*x^30 - 22788169*x^29 + 356245*x^28 + 13001022*x^27 - 120681074*x^26 + 379138834*x^25 - 251876102*x^24 + 576442931*x^23 + 394617661*x^22 - 1914308187*x^21 + 1873927920*x^20 - 5326366508*x^19 + 1371219529*x^18 + 2001539759*x^17 - 9889048234*x^16 + 22330230077*x^15 - 9918095549*x^14 + 1934927850*x^13 + 41001461054*x^12 - 37979697765*x^11 + 8169529015*x^10 + 13175783912*x^9 - 55418628407*x^8 + 2188320806*x^7 - 1793697518*x^6 - 21729183123*x^5 - 927541692*x^4 + 301468299*x^3 + 1484196634*x^2 + 59977427*x - 879691)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^45 - 3*x^44 + 19*x^43 - 46*x^42 + 57*x^41 - 164*x^40 - 1542*x^39 + 2752*x^38 - 13177*x^37 + 27636*x^36 - 5513*x^35 + 194674*x^34 - 95004*x^33 + 1568504*x^32 - 4411428*x^31 + 7701411*x^30 - 22788169*x^29 + 356245*x^28 + 13001022*x^27 - 120681074*x^26 + 379138834*x^25 - 251876102*x^24 + 576442931*x^23 + 394617661*x^22 - 1914308187*x^21 + 1873927920*x^20 - 5326366508*x^19 + 1371219529*x^18 + 2001539759*x^17 - 9889048234*x^16 + 22330230077*x^15 - 9918095549*x^14 + 1934927850*x^13 + 41001461054*x^12 - 37979697765*x^11 + 8169529015*x^10 + 13175783912*x^9 - 55418628407*x^8 + 2188320806*x^7 - 1793697518*x^6 - 21729183123*x^5 - 927541692*x^4 + 301468299*x^3 + 1484196634*x^2 + 59977427*x - 879691, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^45 - 3*x^44 + 19*x^43 - 46*x^42 + 57*x^41 - 164*x^40 - 1542*x^39 + 2752*x^38 - 13177*x^37 + 27636*x^36 - 5513*x^35 + 194674*x^34 - 95004*x^33 + 1568504*x^32 - 4411428*x^31 + 7701411*x^30 - 22788169*x^29 + 356245*x^28 + 13001022*x^27 - 120681074*x^26 + 379138834*x^25 - 251876102*x^24 + 576442931*x^23 + 394617661*x^22 - 1914308187*x^21 + 1873927920*x^20 - 5326366508*x^19 + 1371219529*x^18 + 2001539759*x^17 - 9889048234*x^16 + 22330230077*x^15 - 9918095549*x^14 + 1934927850*x^13 + 41001461054*x^12 - 37979697765*x^11 + 8169529015*x^10 + 13175783912*x^9 - 55418628407*x^8 + 2188320806*x^7 - 1793697518*x^6 - 21729183123*x^5 - 927541692*x^4 + 301468299*x^3 + 1484196634*x^2 + 59977427*x - 879691);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - 3*x^44 + 19*x^43 - 46*x^42 + 57*x^41 - 164*x^40 - 1542*x^39 + 2752*x^38 - 13177*x^37 + 27636*x^36 - 5513*x^35 + 194674*x^34 - 95004*x^33 + 1568504*x^32 - 4411428*x^31 + 7701411*x^30 - 22788169*x^29 + 356245*x^28 + 13001022*x^27 - 120681074*x^26 + 379138834*x^25 - 251876102*x^24 + 576442931*x^23 + 394617661*x^22 - 1914308187*x^21 + 1873927920*x^20 - 5326366508*x^19 + 1371219529*x^18 + 2001539759*x^17 - 9889048234*x^16 + 22330230077*x^15 - 9918095549*x^14 + 1934927850*x^13 + 41001461054*x^12 - 37979697765*x^11 + 8169529015*x^10 + 13175783912*x^9 - 55418628407*x^8 + 2188320806*x^7 - 1793697518*x^6 - 21729183123*x^5 - 927541692*x^4 + 301468299*x^3 + 1484196634*x^2 + 59977427*x - 879691);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\times C_{15}$ (as 45T3):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 90
The 45 conjugacy class representatives for $S_3\times C_{15}$
Character table for $S_3\times C_{15}$

Intermediate fields

3.3.961.1, 3.1.10571.1, \(\Q(\zeta_{11})^+\), 9.3.1181267399411.1, 15.15.2572344674223769220522333521.1, 15.5.28295791416461461425745668731.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 30 sibling: data not computed
Minimal sibling: 30.0.10745322081507339108891258824483901499337171.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.10.0.1}{10} }^{3}{,}\,{\href{/padicField/2.5.0.1}{5} }^{3}$ $15^{3}$ $15^{3}$ $30{,}\,15$ R $30{,}\,15$ $30{,}\,15$ $30{,}\,15$ ${\href{/padicField/23.3.0.1}{3} }^{15}$ ${\href{/padicField/29.10.0.1}{10} }^{3}{,}\,{\href{/padicField/29.5.0.1}{5} }^{3}$ R $15^{3}$ $30{,}\,15$ ${\href{/padicField/43.6.0.1}{6} }^{5}{,}\,{\href{/padicField/43.3.0.1}{3} }^{5}$ $15^{3}$ $15^{3}$ $15^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display 11.15.12.1$x^{15} + 10 x^{13} + 45 x^{12} + 40 x^{11} + 393 x^{10} + 890 x^{9} + 750 x^{8} - 3970 x^{7} + 9610 x^{6} + 13085 x^{5} + 151045 x^{4} + 26525 x^{3} + 116170 x^{2} - 53795 x + 67662$$5$$3$$12$$C_{15}$$[\ ]_{5}^{3}$
Deg $30$$10$$3$$27$
\(31\) Copy content Toggle raw display Deg $45$$3$$15$$30$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.11.2t1.a.a$1$ $ 11 $ \(\Q(\sqrt{-11}) \) $C_2$ (as 2T1) $1$ $-1$
1.341.6t1.b.a$1$ $ 11 \cdot 31 $ 6.0.1229206451.2 $C_6$ (as 6T1) $0$ $-1$
1.341.6t1.b.b$1$ $ 11 \cdot 31 $ 6.0.1229206451.2 $C_6$ (as 6T1) $0$ $-1$
* 1.31.3t1.a.a$1$ $ 31 $ 3.3.961.1 $C_3$ (as 3T1) $0$ $1$
* 1.31.3t1.a.b$1$ $ 31 $ 3.3.961.1 $C_3$ (as 3T1) $0$ $1$
1.11.10t1.a.a$1$ $ 11 $ \(\Q(\zeta_{11})\) $C_{10}$ (as 10T1) $0$ $-1$
1.11.10t1.a.b$1$ $ 11 $ \(\Q(\zeta_{11})\) $C_{10}$ (as 10T1) $0$ $-1$
1.11.10t1.a.c$1$ $ 11 $ \(\Q(\zeta_{11})\) $C_{10}$ (as 10T1) $0$ $-1$
* 1.11.5t1.a.a$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
* 1.11.5t1.a.b$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
1.11.10t1.a.d$1$ $ 11 $ \(\Q(\zeta_{11})\) $C_{10}$ (as 10T1) $0$ $-1$
* 1.11.5t1.a.c$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
* 1.11.5t1.a.d$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
* 1.341.15t1.a.a$1$ $ 11 \cdot 31 $ 15.15.2572344674223769220522333521.1 $C_{15}$ (as 15T1) $0$ $1$
1.341.30t1.a.a$1$ $ 11 \cdot 31 $ 30.0.8807169930722835293105789536033770566807190677270302653971.1 $C_{30}$ (as 30T1) $0$ $-1$
* 1.341.15t1.a.b$1$ $ 11 \cdot 31 $ 15.15.2572344674223769220522333521.1 $C_{15}$ (as 15T1) $0$ $1$
* 1.341.15t1.a.c$1$ $ 11 \cdot 31 $ 15.15.2572344674223769220522333521.1 $C_{15}$ (as 15T1) $0$ $1$
1.341.30t1.a.b$1$ $ 11 \cdot 31 $ 30.0.8807169930722835293105789536033770566807190677270302653971.1 $C_{30}$ (as 30T1) $0$ $-1$
1.341.30t1.a.c$1$ $ 11 \cdot 31 $ 30.0.8807169930722835293105789536033770566807190677270302653971.1 $C_{30}$ (as 30T1) $0$ $-1$
* 1.341.15t1.a.d$1$ $ 11 \cdot 31 $ 15.15.2572344674223769220522333521.1 $C_{15}$ (as 15T1) $0$ $1$
* 1.341.15t1.a.e$1$ $ 11 \cdot 31 $ 15.15.2572344674223769220522333521.1 $C_{15}$ (as 15T1) $0$ $1$
1.341.30t1.a.d$1$ $ 11 \cdot 31 $ 30.0.8807169930722835293105789536033770566807190677270302653971.1 $C_{30}$ (as 30T1) $0$ $-1$
* 1.341.15t1.a.f$1$ $ 11 \cdot 31 $ 15.15.2572344674223769220522333521.1 $C_{15}$ (as 15T1) $0$ $1$
1.341.30t1.a.e$1$ $ 11 \cdot 31 $ 30.0.8807169930722835293105789536033770566807190677270302653971.1 $C_{30}$ (as 30T1) $0$ $-1$
* 1.341.15t1.a.g$1$ $ 11 \cdot 31 $ 15.15.2572344674223769220522333521.1 $C_{15}$ (as 15T1) $0$ $1$
1.341.30t1.a.f$1$ $ 11 \cdot 31 $ 30.0.8807169930722835293105789536033770566807190677270302653971.1 $C_{30}$ (as 30T1) $0$ $-1$
1.341.30t1.a.g$1$ $ 11 \cdot 31 $ 30.0.8807169930722835293105789536033770566807190677270302653971.1 $C_{30}$ (as 30T1) $0$ $-1$
* 1.341.15t1.a.h$1$ $ 11 \cdot 31 $ 15.15.2572344674223769220522333521.1 $C_{15}$ (as 15T1) $0$ $1$
1.341.30t1.a.h$1$ $ 11 \cdot 31 $ 30.0.8807169930722835293105789536033770566807190677270302653971.1 $C_{30}$ (as 30T1) $0$ $-1$
* 2.10571.3t2.a.a$2$ $ 11 \cdot 31^{2}$ 3.1.10571.1 $S_3$ (as 3T2) $1$ $0$
* 2.341.6t5.b.a$2$ $ 11 \cdot 31 $ 6.0.1279091.2 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.341.6t5.b.b$2$ $ 11 \cdot 31 $ 6.0.1279091.2 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.116281.15t4.a.a$2$ $ 11^{2} \cdot 31^{2}$ 15.5.28295791416461461425745668731.1 $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.116281.15t4.a.b$2$ $ 11^{2} \cdot 31^{2}$ 15.5.28295791416461461425745668731.1 $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.116281.15t4.a.c$2$ $ 11^{2} \cdot 31^{2}$ 15.5.28295791416461461425745668731.1 $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.116281.15t4.a.d$2$ $ 11^{2} \cdot 31^{2}$ 15.5.28295791416461461425745668731.1 $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.3751.30t15.b.a$2$ $ 11^{2} \cdot 31 $ 45.15.22655076666278607886805489601267939337377890930813594593620979789073992426604317061891.1 $S_3\times C_{15}$ (as 45T3) $0$ $0$
* 2.3751.30t15.b.b$2$ $ 11^{2} \cdot 31 $ 45.15.22655076666278607886805489601267939337377890930813594593620979789073992426604317061891.1 $S_3\times C_{15}$ (as 45T3) $0$ $0$
* 2.3751.30t15.b.c$2$ $ 11^{2} \cdot 31 $ 45.15.22655076666278607886805489601267939337377890930813594593620979789073992426604317061891.1 $S_3\times C_{15}$ (as 45T3) $0$ $0$
* 2.3751.30t15.b.d$2$ $ 11^{2} \cdot 31 $ 45.15.22655076666278607886805489601267939337377890930813594593620979789073992426604317061891.1 $S_3\times C_{15}$ (as 45T3) $0$ $0$
* 2.3751.30t15.b.e$2$ $ 11^{2} \cdot 31 $ 45.15.22655076666278607886805489601267939337377890930813594593620979789073992426604317061891.1 $S_3\times C_{15}$ (as 45T3) $0$ $0$
* 2.3751.30t15.b.f$2$ $ 11^{2} \cdot 31 $ 45.15.22655076666278607886805489601267939337377890930813594593620979789073992426604317061891.1 $S_3\times C_{15}$ (as 45T3) $0$ $0$
* 2.3751.30t15.b.g$2$ $ 11^{2} \cdot 31 $ 45.15.22655076666278607886805489601267939337377890930813594593620979789073992426604317061891.1 $S_3\times C_{15}$ (as 45T3) $0$ $0$
* 2.3751.30t15.b.h$2$ $ 11^{2} \cdot 31 $ 45.15.22655076666278607886805489601267939337377890930813594593620979789073992426604317061891.1 $S_3\times C_{15}$ (as 45T3) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.